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Abstract
The modeling and analysis of adaptive distributed systems, specifically those that possess (self-)reconfiguration

or modification capabilities, present a considerable challenge, necessitating the use of appropriate formalisms and

techniques. Traditional quantitative analysis frameworks demonstrate constrained expressiveness and should be

amalgamated with innovative methodologies. Rewriting-based frameworks appear to be more suitable, despite

their predominant application in formal verification. This paper examines the use of Maude as a framework for

performance or probabilistic analysis in adaptive distributed systems, highlighting recent advances.
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1. Introduction

Analyzing and modeling adaptive distributed systems, particularly those with capabilities for (self-)

reconfiguration or modification, pose significant challenges and require the application of suitable

formalisms and techniques. Traditional quantitative analysis frameworks, including stochastic process

algebras, timed and stochastic Petri nets (PN) and timed/probabilistic automata exhibit limited expres-

siveness when the system undergoes big changes during its execution. These modeling frameworks

lead to the merging of functional and non-functional elements within models, impacting scalability.

Various noteworthy extensions have been suggested, such as the 𝜋-calculus, the Ambient calculus, and

the Nets-within-Nets paradigm. However, these extensions have not been well-supported by tools and

efficient analysis features. Systems based on rewriting, especially Graph Transformation Systems, are

more suitable, but they are mainly used for formal verification. This paper explores the utilization

of Maude as a framework for performance or probabilistic analysis in adaptive distributed systems,

focusing on recent progress.

Maude [1] is a purely declarative language with high performance and sound rewriting logic semantics

[2]. It achieves efficiency and expressiveness through pattern-matching modulo operator attributes,

subtyping, partiality, generic types, and reflection. A Maude system module is an executable specification

for a distributed system. The Maude runtime engine provides various facilities for model checking,

verification of LTL formulae, infinite-state analysis, and symbolic reachability analysis. Furthermore,

Maude has been used as a logical framework for other formalisms, such as Petri Nets (PN), Automata,

and Process Algebra. These formalisms, though powerful, lack the necessary features for modeling

adaptable systems intuitively.

Maude possesses intuitive rewriting semantics. Statements are classified as equations (utilized as

simplifications) or rewrite rules (representing local concurrent transitions). A Maude specification

comprises Functional modules (which contain only equations) and System modules (which include

rules and potentially equations). A functional module characterizes a theory (Σ, 𝐸 ∪ 𝐴) within the
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framework of membership equational logic: Σ constitutes the signature (operators, sorts, subsorts),

𝐸 comprises the set of axioms, and 𝐴 encapsulates the operator equational attributes (such as AC).

The model of an equational theory is the initial algebra, specifically, the quotient term algebra 𝑇Σ/𝐸∪𝐴,

which, assuming confluence and termination conditions are met, is isomorphic to the canonical term

algebra: consequently, the mathematical and operational semantics align. A system module represents a

rewrite theory (Σ, 𝐸 ∪𝐴,𝑅), 𝑅 being a nonempty set of rules. The corresponding model is set forth as

a labeled transition system (TS) associated with each term: therein, the distributed states are represented

by canonical terms, whereas state transitions illustrate classes of equivalent rewrites.

Related Works Several options exist for timed and probabilistic analysis using Maude. [3] presents a

non-up-to-date survey. The framework presented in [4] enables deterministic time specifications to

analyze real-time systems. A branching-time analysis framework for Maude specifications is described

in [5]. The approach detailed in [6], based on probabilistic rewrite theories associated with actors,

enables probabilistic discrete-event simulation. [7] presents a reflective framework in Maude for the

quantitative analysis of self-adaptive systems. More recently, [8] introduced a comprehensive method

for using Maude in stochastic analysis through a probabilistic extension of its strategy language. In

particular, this strategy language operates at the ”object” level rather than the meta-level.

2. Associating a Markov Process to Maude Executable Modules

In [9], we introduce a new general methodology to generate a (continuous- or discrete-time) Markov

chain (MC) from user-defined Maude executable modules (including stochastic parameters) directly

and systematically. Our approach and objectives differ significantly from the above mentioned works.

Essentially, our goal is to equip any executable specification in Maude with probabilistic semantics

directly, through (automatic) “preprocessing” the original modules, marking an important step toward

automating the entire process.

Calculating the MC stochastic matrix exactly is challenging due to rewriting logic semantics, which

obfuscates multiple state transitions. The methodology, which functions for any Maude executable

specification, is illustrated through a challenging application domain: stochastic PN with a dynamically

changing structure (see the next section). This application example outlines all the potential issues

related to the accurate derivation of a Markov process from Maude executable modules.

The rewriting logic establishes a labeled transition system (TS) associated with ground terms of

any type. However, deriving a consistent Markov chain for this TS presents challenges for three main

reasons: TS state transitions correspond to equivalence classes of rewrites; equivalent rewrites may be

logically indistinguishable and need to be united; and local rewrites of subterms within a specific term

may occur. To our knowledge, none of the mentioned techniques addresses all these issues. Our method,

which delineates a class of meta-operators at the object level, is more straightforward to implement and

significantly more efficient than the predefined Maude’s meta-level modules when addressing extensive

state spaces (comprising dozens or hundreds millions of states). In addition, it shows greater precision

compared to using the Maude’s strategy language.

Stochastic parameters are first integrated into a Maude executable specification (a system module)

flexibly and intuitively. Next, the challenge of accurately calculating state transition rates is tackled by

methodically preprocessing executable modules so that they generate an enhanced description of states

associated with terms, which contains all the information to calculate state-transition rates exactly.

Thus, we obtain the corresponding MC generator matrix through fundamental text processing.

We will outline the method to obtain the MC generator matrix using the Maude represen-

tation of Stochastic Petri Nets (SPN) [10, 11]. The formalization of SPNs contains a straight-

forward hierarchy of modules accessible at https://github.com/lgcapra/rewpt. The module

SPN-SIG{TL :: TRIV, PL ::TRIV} establishes the SPN signature and is parameterized by both

place and transition labels. A parameterized module implements type parameters through (functional)

theories. These theories define the module interfaces by specifying the syntactic and semantic properties

https://github.com/lgcapra/rewpt


for the parameter modules. Theories have loose semantics, meaning they accept any algebra that

satisfies the stipulated equations and membership axioms. In Maude, views connect a source theory to

a target module or theory and specify the mapping of sorts and operators. The theory TRIV merely

requires a sort. The SPN signature is predicated upon a concise definition of multisets as weighted

sums, as facilitated by the predefined module BAG{X :: TRIV}.

This module is imported in the protecting mode, thus preserving the initial semantics within

the module SPN-SIG, utilizing the formal parameter PL as the actual parameter for BAG. Specifically,

the sort Pbag encompasses multisets of places. SPN transitions, which are terms of sort Tran, are

characterized by labels associated with adjacency lists, conveyed through Pbag triples [I, O, H].

These labels consist of a descriptive tag (a String in our context), a Float representing the rate

parameter of a negative exponential firing delay, and a Nat that specifies the firing policy. For example,

the ground term:

t("a", 1.5, 0) |-> [1 . p(1) + 2 . p(2), 1 . p(1), 2 . p(1)]

delineates a transition identified by the label "a", an exponential firing rate 𝜇 = 1.5, and typified by

an infinite-server type. This transition requires the presence of exactly one token in place 𝑝1 and

a minimum of two tokens in place 𝑝2 for the enabling. Upon firing, it removes two tokens from 𝑝2.

The PT net that underlies an SPN, classified as a term of type Net, is defined straightforwardly in a

modular fashion through the utilization of the associative/commutative juxtaposition ; and the subsort

relationship Tran < Net.

Using the predefined firingRate operator, we can define marking-dependent rates: The current

definition is based on the enabling degree (𝑒𝑑(𝑡,𝑚)), which refers to the occurrences of a transition that

are simultaneously enabled in a marking. Under the infinite server policy (0), the transition exponential

rate is 𝜇 · 𝑒𝑑(𝑡,𝑚). Under the 𝑘-server policy, 𝑘 > 0, it is 𝜇 ·𝑚𝑖𝑛(𝑒𝑑(𝑡,𝑚), 𝑘).
The system module SPN-SYS{TL :: TRIV, PL ::TRIV} extends SPN-SIG by defining the SPN

firing rule as a rewrite rule. This rule applies to the System terms, composed of a Net and a Pbag
subterm.

In the Transition System (TS) generated in Maude, a single state transition may amalgamate multiple

"equivalent" instances. For instance, consider various (SPN) transitions that are enabled in a given

marking and upon firing reach the same target marking. This occurs frequently, for example, when

generating a TS quotient using a canonical representative for markings [11]. To accurately determine

the corresponding rates in the Markov chain’s stochastic matrix, an approach grounded in automated

preprocessing system modules is employed.

1. rewrite rules are translated into kinds of "meta-level" operators (at the object-level), which

compute every distinguished rule match

2. because rewrite rules can apply locally to fragments of subject terms, they are encapsulated at

the level of a subject term of in accordance with the terms’ abstract syntax graph

3. upon preprocessing, an augmented TS is created wherein states include the exact state transition

rates

Several experiments show tolerable overhead resulting from redundant state representation. Alterna-

tives relying on Maude’s predefined meta-level modules or strategy language tend to be unwieldy or

imprecise and lack the capacity for full automation.

Focusing on point 1, which is critical in the process, the following excerpt shows the result of the

automated encoding of the SPN firing rule in a corresponding firing match operator (subject

to further optimization, here ignored): A term of sort StateTran{System} encompasses a target

marking and the corresponding rate. The classic fixed-point iteration is used to calculate all possible

matches (variable substitutions) of the rule. The same schema applies to any rewrite rule.



var T : Tran . vars M M’ : Pbag . vars N N’ : Net . var S : System .

var R : Float . var X : Set{StateTran{System}}. var XM : Match.

crl [firing] : N M => N fire(T, M) if T ; N’ := N /\ enabled(T, M) /\ R := firingRate(T, M) .

∗∗∗ rule’s translation into an operator

op firing−match : System −> Set{StateTran{System}} .

eq firing−match(S) = $firing−match(S,noStateTranS) .

op $firing−match : System Set{StateTran{System}} −> Set{StateTran{System}} .

ceq $firing−match(S, X) = $firing−match(S, (XM −−> S’ : R) U X) if (T ; N) M := S /\

enabled(T, M) /\ S’ := (T ; N) firing(T, M) /\ R := firingRate(T, M) /\ XM := {N} & {T} & {M} /\

(XM −−> M’ : R) in X = false .

eq $firing−match(S, X) = X [owise] .

3. Rewritable Stochastic PN

Rewritable Petri nets ([10, 12]) constitute a highly flexible model for distributed adaptive systems,

as formalized in Maude. Within this framework, the PN firing rule, along with modifications to the

net structure, are specified in a standardized manner. In [11], improvements have been achieved by

integrating net algebra operators that identify symmetries, specifically Petri net automorphisms, through

systematic and transparent node labeling. These node labels represent the modular and hierarchical

configuration of the models, facilitating the construction of a quotient transition system via efficient

normalization of states (canonical terms).

Rewriting rule

Pattern Rewrite

Application

Rewriting rule

Pattern Rewrite

Application

a)

b)

Figure 1: Following the semantics of a Petri Net as a graph rewriting system: a) simple transition, b) a more

complex example.



Rewrite rules that rely on symmetric net transformations preserve this labeling strategy. Analyzing

models modulo automorphisms is essential to maintain scalability across all frameworks predicated on

graph transformation systems, of which rewritable PNs serve as an exemplar. In [13], we have extended

rewritable PNs by incorporating stochastic parameters and outline a semi-automated procedure to

extract a compact continuous-time Markov chain (CTMC) from the TS quotient.
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Figure 2: The generation of the infinitesimal generator as successive graph rewriting operations

This CTMC satisfies the exact lumpability property, which parallels the strong bisimilarity observed

in the quotient transition system. The efficacy of this approach has been illustrated using a composite

model of a gracefully degrading production system. We believe that by integrating the methodology

described in [9], the process of generating lumped CTMC could be completely automated in the near

future.

By creating proper rules, the semantics of a specific modeling formalism can be implemented. For

example, Fig.1 shows how the semantics of a Petri net can be interpreted as a graph rewriting system.

In particular, in Fig.1a), a rule matches a pattern consisting of a place marked with one token, connected

to a transition, which is further connected to a place. The application of the rule rewrites the identified

subnetwork, with one in which the token has been moved to the second place. Fig.1b) shows how these

rewriting rules can be extended to a more complex case, where a pattern contains two tokens inside

two input places, and the rewriting rule combines them and marks the third place. Please note that,

generally, rules are specified using functional expressions, so one rule can match a large number of

cases, making this process enumerable and feasible.

One of the most interesting properties of these types of rewriting system is that the nodes of the

graphs can be graphs themselves. In this way, the rewriting can even produce the infinitesimal generator

of a Stochastic Petri Net Model, as shown in Fig.2. In this case, the initial graph is composed of a single

node, which is itself a graph that corresponds to the Petri Net in its initial state.

The first rewriting (whose formalization as a rule is omitted for simplicity) transforms this graph into

another that adds a node, with the marking obtained by the first transition, and a connection, labeled

with the transition rate (𝜇1) at which this event occurred. A second rewriting adds a third node to the
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Figure 3: The CTMC created with graph rewriting
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Figure 4: The encoding of a state as supported by the rewriting system.

outermost graph, which contains the final Petri net configuration, connected with an arc labeled with

rate 𝜇2. This corresponds to the CTMC that describe the evolution of the considered Stochastic Petri

Nets, as shown in Fig.3

One of the advantages of creating the infinitesimal generator through graph rewriting is that the

configurations of the model represented by the states of the CTMC are created in a compact way that

natively performs lumping, as shown in Fig.4. This allows us to generate CTMCs with state spaces

much smaller than in conventional techniques.

In this example, a model where three identical components are present, plus a second different one,

is encoded by having the three possible evolution of each subcomponent exposed, and counting that we

have three of them representing the initial state of the system are required. Also, the lower part of the

model is encoded with an additional sub-network, where currently the version with the empty place is

used once. This makes the classical state-space reduction techniques based on symmetries considered

native, thus reducing the generated state spaces.

4. Probabilistic Nets-within-Nets

In [15], we examine Hornets enhanced by incorporating firing probabilities to represent multi-agent

systems with capabilities for self-modification. The theory is explained in more detail in [14]. Hor-

nets [16] embody a Nets-within-Nets formalism, a type of Petri net formalism characterized by tokens

that themselves are Petri nets. Each net-token possesses its own firing rate, which operates indepen-

dently from the firing rates of other net-tokens. Hornets furnish algebraic operations that enable

modification of net tokens during firing. Within our probabilistic extension, these operators are capable

of individually adjusting the net-token firing rate.

Our model is used to conduct a quantitative analysis of self-modifying systems. Hornets are

particularly adept at modeling self-adaptive systems engaged in a MAPE-like loop (monitor-analyze-

plan-execute). In this context, the system net represents the feedback loop, whereas the net-tokens

illustrate the adapted model elements. We introduce a subclass of Hornets that can be readily formalized



Figure 5: The Probabilistic eHornet: System-Net containing the Battle-of-Sexes Interaction (right) and the

Structural Adaption Logic (left) (adapted from [14])

in Maude. Consequently, this allows for the utilization of additional tools for generating probabilistic

state spaces, specifically, discrete Markov chains, in our stochastic framework.

We would like to illustrate our ideas by an idea first presented in [14]. Our self-adaptive system is

based on the battle-of-sexes scenario, which is well known in game theory. Two agents, named 0 and 1,

must choose between two actions, labeled 𝑎𝑖 and 𝑏𝑖, 𝑖 = 0, 1. They receive a positive reward if they

choose the same action (i.e. coordinate) and zero otherwise.

In this game, the first agent prefers action 𝑎, while the second prefers 𝑏. If

we assume that the reward for the preferred outcome is three times higher

than for the other, then the game is specified by the payoff matrix:

𝑎1 𝑏1

𝑎0 (3, 1) (0, 0)

𝑏0 (0, 0) (1, 3)

Let (𝑎⟨𝑥⟩⊕⟨𝑦⟩𝑏) describe the probabilistic xor choice between action 𝑎 and 𝑏 where Λ(𝑎) = 𝑥 and

Λ(𝑏) = 𝑦. The object net that models this game is shown as a net-token in Fig. 5; it is a parallel

composition (denoted by _‖_) of two choices (for some initial values of 𝑥0, 𝑦0, 𝑥1, and 𝑦1):

𝑁Λ
1 = (𝑎0

⟨𝑥0⟩⊕⟨𝑦0⟩𝑏0) ‖ (𝑎1
⟨𝑥1⟩⊕⟨𝑦1⟩𝑏1) (1)

The system net observes the decision history and adapts by modifying the rates (cf. eHornet in

Fig. 5). We have four transitions named play game on the right side corresponding to the four different



ways of choosing the actions. We give the payoff as a reward signal to the agents. (There may be

more appropriate ways to adapt, but for this simple example, we do not care about the efficiency of the

learning process.) For example, when the agents play (𝑎0, 𝑎1), then we update the rates in the workflow

by the payoff (3, 1), and we obtain the following.

𝑁Λ
2 = (𝑎0

⟨𝑥0+3⟩⊕⟨𝑦0⟩𝑏0) ‖ (𝑎1
⟨𝑥1+1⟩⊕⟨𝑦1⟩𝑏1) (2)

We have another source of adaption in the system net: Choices that are chosen quite regularly over a

longer time period are converted into fixed structures without choice by the two transitions named

adapt XOR on the left-hand side. In this example, the transformation is allowed whenever 𝑎0 is chosen

in more than 80% of the time. This is expressed by the transition guard
𝑥0

(𝑥0+𝑦0)
> 0.8. Then, we obtain

𝑁Λ
3 = 𝑎0 ‖ (𝑎1⟨𝑥1⟩⊕⟨𝑦1⟩𝑏1) as the modified net structure. Analogously, whenever 𝑏0 dominates. (For

simplicity, we omit modifications in the model whenever the second agent has a dominating option.)

In [14] we implemented Hornets in Maude to translate our game-theoretical model into a Discrete

Time Markov Chain (DTMC) to establish guarantees for the occurrence of structural modifications

within a given number of execution steps.
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Figure 6: A rewritable multi-formalism model.

5. Adaptive Multi-formalism

Rewriting also provides solid and powerful support for the analysis of multiformalism models [17].

Multiformalism models typically exhibit complexity, modularity and heterogeneity in the formalisms

which define modules: rewriting can be used to add dynamic solution-time features to multiformalism

models, by allowing the dynamic generation or adaptation of modules to take into account partial

results and ease model parameterization while lowering the complexity of the analysis process. For

example, rewriting is being used to incorporate in SIMTHESys [18] the features obtained in OsMoSys

[19] by means of a complex orchestration engine [20].

Fig.6 shows a re-writable multiformalism model, which is detailed in Fig.7.

The model represents a two-tier architecture that serves requests generated by 𝑁 users, whose "think

time" is modeled by the place 𝑃3 and the transition 𝑇3 of the submodel 𝑃𝑁2. The two tiers can be

deployed on two servers that might experience down periods. In particular, place 𝑃2 of the submodel

𝑃𝑁1 contains as many tokens as the current number of active servers, 𝑇1 models the possibility that a
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Figure 7: The evolution of the proposed rewritable model.

server goes down, 𝑃1 accounts for the number of servers that are not available, and 𝑇2 models the return

in operation of one of the servers. Depending on the marking 𝑃2, the submodel identified with 𝑉 ? is

replaced by a different implementation. In particular, when both servers are available, the submodel

used is 𝑉 2, a queueing network with two stations 𝑄1 and 𝑄2 that represents the two tiers. Each station

is characterized by its own service time. When one server goes down, the submodel 𝑉 ? becomes the

multiclass queuing network represented in 𝑉 1. In this case, a single multiclass queueing station 𝑄3 is

used, where the current tier being executed is represented by the class of the job. When the first-tier

jobs end, they change class due to the class switch 𝐶𝑆1 and re-enters 𝑄3 as costumers of the other class.

When the second tier finishes, they can leave the subnetwork. If both servers are down simultaneously,

𝑉 ? is replaced by the Colored Petri Net represented in 𝑉 0. Here, jobs are tokens, colored by their

current stage. The place 𝑃5 collects interrupted jobs that wait for server availability. The place 𝑃4 and

the forever disabled transition 𝑇4 illustrate the blockage of the system, preventing user activity.



6. Conclusions and Future Work

As briefly shown in this paper, rewriting techniques have a great potential as means to improve the

efficiency of the analysis of complex stochastic models and to support advanced modeling approaches

such as multiformalism modeling, on which future work will focus to verify at which extent this

potential will manage to support the implementation of advanced dynamic features for the parametric

analysis-time model adaptation and generation.
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