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Abstract

In smart hospitals, achieving a balance between cybersecurity and quality of service (QoS) is a critical yet
underexplored challenge. Cyberattacks can disrupt medical services, while overly aggressive countermeasures
may degrade performance or availability, thus violating Service Level Agreements (SLAs). To quantify this trade-
off, we model a representative smart healthcare system using two formal approaches: Colored Stochastic Petri
Nets (CSPNs) and Markovian Agent Models (MAMs). The CSPN captures fine-grained, concurrent behaviors and
stochastic delays at the token level, while the MAM abstracts global system dynamics via differential equations.
Through extensive simulations, we evaluate mitigation latency, resource saturation, and system responsiveness
under cyberattack scenarios. Confidence intervals, computed from repeated CSPN runs, provide statistically
grounded insight into SLA compliance variability, highlighting that a significant portion of mitigations exceed
the defined threshold. Despite the potential for rapid mitigation, stochastic delays and concurrency often result
in critical SLA violations. This dual-model approach enables a complementary analysis: CSPNs reveal short-term
congestion and resource contention, whereas MAMs uncover long-term systemic trends. The study offers a
reproducible framework for evaluating cyber-resilience in safety-critical environments.
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1. Introduction

The compromise between Service Level Agreements (SLAs), which ensure high performance and
availability, and the negative impact that cyberattack countermeasures may have, remains a persistent
challenge in contemporary digital infrastructures. In sectors such as healthcare, manufacturing, finance,
and transportation, the continuity and quality of services are vital. Yet, the very security mechanisms
designed to safeguard these systems can inadvertently degrade performance. For example, in healthcare,
isolating a potentially compromised medical device may delay the transmission of critical physiological
data, putting patients at risk. In manufacturing, containment of a cyber incident might interrupt
production lines, while in finance or transportation, network reconfiguration or mitigation can impair
real-time responsiveness. As these systems become increasingly interconnected and edge-driven,
their exposure to cyber threats increases in proportion. Cyberattacks targeting distributed nodes
can introduce service delays, compromise safety-critical workflows, and erode trust in automated
mitigation. Conversely, actions like node quarantine or load redistribution can degrade Quality of
Service (QoS), highlighting the trade-off between security and operational continuity. Understanding
this trade-off requires formal, quantitative tools capable of capturing complex system behavior under
both nominal and adversarial conditions. This paper presents a comparative study based on two
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complementary modeling formalisms: Colored Stochastic Petri Nets (CSPNs, [1]) and Markovian
Agent Models (MAMs, [2]), applied to a shared smart hospital scenario. CSPNs provide fine-grained,
token-level semantics with support for concurrency and resource contention, making them particularly
suitable for modeling transient bottlenecks and asynchronous mitigation dynamics. MAMs, in contrast,
offer a population-level view grounded in coupled differential equations, enabling tractable evaluation
of emergent properties such as cascading failures and systemic resilience. This approach contrasts other
techiques, such as multiformalism modeling ([3, 4, 5]. While prior work has analyzed security—QoS
interactions using either micro-level or macro-level formalisms, a direct comparison between CSPNs
and MAMs under identical assumptions has not been systematically explored. This study addresses
that gap and frames the following research questions:

RQ1. How do CSPNs and MAMs differ in quantifying the trade-offs between cybersecurity measures
and Quality of Service in smart healthcare systems?

RQ2. Can macroscopic approximations (MAMs) faithfully capture the same degradation and recovery
patterns as token-level simulations (CSPNs)?

Our comparative evaluation reveals that while both formalisms detect the impact of cybersecurity
interventions on availability and latency, they differ in sensitivity and representational clarity. CSPNs
capture transient oscillations and local saturation more precisely, whereas MAMs offer scalable insight
into systemic behavior and enable closed-form trend analysis. These results provide operational guid-
ance for model selection in SLA-sensitive domains, depending on the desired granularity, computational
budget, and analytic goals. Following this introduction, Section 2 presents the healthcare case study.
Section 3 details the CSPN and MAM models developed. Section 4 comments on the comparative results.
Related work is reviewed in Section 5, and final reflections are offered in Section 6.

2. Case study

This study focuses on a smart hospital scenario where cybersecurity measures may conflict with QoS
requirements. Core QoS metrics include latency in transmitting patient data, system availability, data
integrity, and service continuity. The hospital infrastructure is composed of interconnected medical
devices (e.g., ventilators, ECGs), edge nodes, and backend servers, all of which are exposed to cyber
threats such as malware and adaptive attacks.

The defensive architecture includes intrusion detection systems and human operators capable of
quarantining compromised devices. However, such countermeasures may delay data transmission or
disrupt care delivery. We examine how attacks on a limited set of devices can propagate system-wide
degradation, impact alert-mitigation latency, and challenge SLAs.

To operationalize this, we define two SLA thresholds: (i) a maximum average mitigation latency of 10
steps (= 2 minutes), and (ii) a minimum throughput of 0.5 mitigations per step. These benchmarks guide
the comparative evaluation of system responsiveness and resilience across the two formal models.

3. Models and experiments

The case study is modelled using a CSPN and an MAM'. Latency was measured as the average delay
between alert detection and successful mitigation, while throughput refers to the number of mitigations
per hour. Each transition is identified by a semantic label, a probability of occurrence p, and its
corresponding stochastic rate A = p - v, where v = 0.1 transitions/hour is the base velocity. This
separation of p and v allows clearer interpretation and flexibility across CSPN and MAM models. While
not derived from first principles, this semi-empirical formulation aligns with common practice in mean-
field modeling and is compatible with exponential timing assumptions in stochastic simulations. The
base velocity v = 0.1 was selected to reflect typical response rates observed in healthcare infrastructures,

The Python code used to perform the experiments is available at https://github.com/EBarbierato/quallTA2025
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though we acknowledge its heuristic nature. All values for probabilities and transition rates have
been derived from empirical evidence reported in recent literature on IoT security, medical device
vulnerability, human-in-the-loop mitigation, and edge computing infrastructures for healthcare systems

([6]).
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Figure 1: CSPN architecture.

In the CSPN depicted in Figure 1, four color sets represent the heterogeneity in sys-
tem components: DeviceType = {ECG, VENT, PUMP}, Department = {ICU, EMERGENCY,
SURGERY}, Status = {NORMAL, COMPROMISED, DEGRADED, QUARANTINED}, and finally,
AttackClass = {STATIC, ADAPTIVE, STEALTH}. Each token in the Devices place is a tuple,
(d : DeviceType, dept : Department, s : Status). Similarly, each token in the Attackers
placeis: (a : AttackClass, target : DeviceType). The places are the following: i) Devices: All
active medical devices with their current type, department, and status; ii) Attackers: Cyber threats
characterized by strategy and preferred device targets; iii) SecuritySystem: Holds mitigation agents,
configured per department; iv) Operators: Tracks human intervention capability per department, and
finally, v) Alerts: Queue of active alerts, identified by department and severity.

MAM

The MAM in Figure 2 includes both degradation and recovery transitions to represent realistic opera-
tional behaviours. For instance, while devices may become compromised (P, — P;), they may later
degrade (P, — P) and eventually recover (P; — P,). Similarly, operator overload is represented not only
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Figure 1: Markovian Agent Model (MAM) with external influences. Dashed
arrows represent cross-class effects.

Figure 2: MAM architecture.

as a state (U,) but also influences the mitigation capacity and responsiveness delay through its feedback
on S, activity. Recovery of operators (U, — U; — U)) is essential to restoring system responsiveness.
The MAM comprises several interacting agent classes. Patient Devices (P), which include equipment
such as ECGs, ventilators, and infusion pumps, can be in one of three states: normal (P;), degraded
(P1), or compromised (P,). Ventilators (V), due to their critical function, are modelled separately and
transition through operational (V;), delayed (V;), and quarantined (V;) states. Edge Nodes (E), acting
as local data processors, evolve from healthy (Ej) to overloaded (E;) and isolated (E,). The Security
Module (S) performs anomaly detection and response, progressing through monitoring (S,), alerted (S;),
and mitigating (S;). The Hospital Backend (H), responsible for long-term records and analytics, may
become delayed or fail, moving from responsive (Hy) to delayed (H;) and ultimately unavailable (H,).
Operators (U) represent human personnel who can be idle (U;), engaged in mitigation (U;), or overloaded
(Us). Finally, the Attacker (A) is a dynamic threat agent advancing through static (Ay), injecting (A;),
adapting (A,), and fully controlling (As3) stages.

Transitions between states are governed by rates 4;_,; = p;_,;-v, where p;_,; is the empirical transition
probability and v = 0.1 transitions/hour is a fixed base velocity. The system dynamics are governed by a
set of probabilistic transitions across agent classes. Patient devices may be compromised with probability
0.60 when the attacker reaches state A3 (Py — P,), while mitigation, triggered by the security system



in S,, reduces severity (P, — P;, 0.50). Devices can autonomously recover to normal operation with
probability 0.30 (P; — P;). The attacker progresses through increasingly dangerous phases, starting
with activation (Ao — Aq, 0.50), adaptation (A; — A,, 0.75), and finally gaining control (A, — As, 0.80).
The security system responds by detecting anomalies (Sy — S, 0.70) and confirming attacks (S; — S,
0.65). Human operators react to alerts generated in S; (Uy — Uj, 0.65), may become overwhelmed
(U; = Us, 0.50), and can partially or fully recover (U, — Uy, 0.25; U; — U, 0.20). Ventilators experience
delays (V;, — Vi, 0.40), may be quarantined due to operator stress (V; — V5, 0.50), and later resume
normal function (V5 — Vj, 0.20). Edge nodes deteriorate from healthy to overloaded (E; — E;, 0.40),
then isolated (E; — E,, 0.45), and finally enter an alarm state (E; — Es, 0.35). The hospital backend is
similarly affected, with latency initiation (Hy — Hj, 0.50), degradation due to edge alarm (H; — H,,
0.45), and full unavailability (H, — Hs, 0.30).

The time evolution of the MAM system is described by the following representative equations,
respectively, for the patient devices (equation 1), the attacker (equation 2), the security system (equation
3), the operators (equation 4), the ventilators (equation 5), the edge nodes (equation 6), and the hospital
backend (equation 7).
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4. Discussion

CSPN

Regarding the CSPN, 100 independent simulation runs were executed. The latency distribution (Fig-
ure 3a) reflects the number of simulation steps elapsed between the firing of the RaiseAlert transition
and the corresponding TriggerMitigation event. While most mitigations occur within 2—4 steps,
a significant portion exceeds the SLA threshold of 10 steps, risking delays in critical responses. The
empirical mean latency is approximately 6.69 steps, with a 95% confidence interval spanning [6.56, 6.81].
This statistical range highlights that, although fast mitigation is possible under favorable conditions,
the system fails to guarantee SLA compliance in a consistent manner. The fact that the upper bound
of the confidence interval remains well below the SLA threshold suggests that the system performs
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Figure 3: Results of the CSPN simulations with confidence-based analysis.

adequately on average; however, the long tail of the distribution indicates that significant variability
exists, and a non-negligible portion of alert responses breach acceptable delay boundaries. This dis-
crepancy is further confirmed in the cumulative distribution function of latency (Figure 3d), where
only about 65% of the mitigation actions are completed within 10 steps. The exponential decay of
the latency distribution is consistent with the stochastic firing logic and fixed delays embedded in
the model: once an alert is raised, the probability of fast mitigation is initially high, but probabilistic
variability, resource contention, and delayed token availability can induce substantially longer wait
times. Figure 3b reports the average number of tokens observed in each place across the simulations.
Notably, the SecuritySystem place accumulates the highest token count, reflecting the retention of
mitigated alerts post-intervention. The Alerts place also holds a non-trivial average token count,
indicating that alerts often remain unresolved for multiple steps, reinforcing the observation of SLA
violations. The low token counts in places such as Devices, Attackers, and Operators suggest rapid
token turnover or relatively infrequent production, emphasizing the selectivity and responsiveness
of the model’s defensive routines. The transition throughput, shown in Figure 3c, reveals that the
most active transitions are AdaptAttack, RaiseAlert, and TriggerMitigation. These transitions
are crucial for reactive behavior in adversarial settings, suggesting a robust attempt by the system to
detect and mitigate threats. However, their frequency alone is insufficient to ensure SLA compliance,
as shown by the latency statistics. In contrast, transitions like CompromiseDevice, MitigateDevice,
and OverloadOperator exhibit significantly lower activity, hinting at strict guard conditions or rare
triggering scenarios. These could be considered focal points for model refinement to better align system
behavior with SLA targets. Lastly, Figure 3d provides a compact visualization of SLA compliance across
the 100 runs. The CDF confirms that while the majority of alerts are mitigated within 10 steps, approxi-
mately 35% of cases fall outside the target window. This tail behavior, although gradually tapering off,
reflects the inherent randomness in transition delays and the saturation of mitigation mechanisms under
concurrent demands. From a system design perspective, this suggests a need for enhanced resilience



features—either by optimizing token dispatch or by provisioning additional mitigation resources during
high-load periods.

MAM

Figure 4 illustrates the temporal dynamics of six distinct agent classes under the MAM. Each subplot
shows the population trajectories over time across the different internal states of each class. Panel 4a
shows the dynamics of the edge computing nodes (E-class). Initially concentrated in the healthy state
Ey, the population progressively shifts toward the degraded E; and disconnected E, states, with a
small but non-negligible fraction ultimately reaching the isolated state E3. The timing and magnitude
of this transition suggest that edge nodes are highly exposed to cumulative stress, possibly from
increasing traffic or compromised dependencies, and that the system lacks sufficient mitigation to
prevent propagation toward isolation. In Panel 4b, the hospital backend servers (H-class) exhibit a
smoother degradation pathway. While there is a steady migration from the operational state Hy to the
quarantined state Hj, the intermediate states H; and H, act as temporary buffers. This indicates that
the backend infrastructure has layered fault-tolerance mechanisms in place but is still susceptible to
long-term cascading effects under sustained adversarial pressure. Panel 4c focuses on patient devices
(P-class), which experience a rapid transition from the normal state P to the compromised state P,
followed by a slower recovery via the degraded state P;. The presence of oscillations between P, and
P; highlights the system’s attempt to restore service while still facing ongoing attacks, evidencing a
conflict between resilience and persistent vulnerability.

Panel 4d captures the security module (S-class), which exhibits a clear pipeline behavior: tokens flow
sequentially from S (inactive) to S; (active) and finally to S, (fully deployed). The fast depletion of
So and concurrent rise of S, suggest a prompt but irreversible activation of the mitigation response,
reflecting a design that favors rapid response over rollback capability. The operator dynamics in Panel 4e
reveal a concerning overload pattern. Agents initially in the available state Uj rapidly transition to
the overloaded state U,, bypassing the intermediate U; state in many cases. This abrupt shift may
indicate that operators are quickly overwhelmed by alert surges or manual intervention requests,
thus reducing the system’s adaptive capacity. Finally, Panel 4f shows the dynamics of the ventilator
subsystem (V-class). The curves show a significant and early drop in the operational state (V) and a
corresponding rise in the delayed (V;) and quarantined (V5) states. The stagnation in recovery suggests
that ventilators are both high-priority and high-risk nodes: once compromised or delayed, they do not
return quickly to operational status, emphasizing their criticality and limited redundancy.

Figure 5 illustrates the temporal evolution of the attacker population, subdivided into four distinct
states: Ay, Ay, Ay, and Asz. The simulation begins with all attackers concentrated in the initial state
Ay, which denotes a baseline active configuration. Over time, a significant portion of the attacker
population transitions toward more advanced stages, notably A, and As, reflecting adaptive and stealthy
behaviors. The transition from A; to A, occurs rapidly due to the high transition rate assigned to
the corresponding process, and is followed by a delayed but steady accumulation in A, representing
attackers that have successfully gained control or evaded detection. The state A, potentially associated
with inactive or defeated attackers, remains unpopulated throughout the simulation, suggesting that
the current model does not include recovery or neutralization mechanisms for attackers. This lack of
reversion results in a monotonic escalation of the attacker’s capability, posing increased challenges for
mitigation systems.

5. Related work

The interplay between cybersecurity enforcement and QoS in healthcare cyber-physical systems has
been addressed from multiple modeling and architectural perspectives in recent literature. Shmeleva
et al. [7] apply Infinite Petri Nets to the analysis of cybersecurity in intelligent systems, showcasing
how scalable formal models can capture the complexity of modern infrastructures under adversarial
conditions. Their work, while not specific to healthcare, is directly relevant to our use of CSPNs for
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Figure 4: Temporal Evolution of Agent Classes in the Markovian Agent Model (MAM).

representing concurrent device interactions and transition delays in smart hospitals. Wu et al. [8]
propose a personalized cyber-physical system for smart healthcare based on Petri net modeling, explicitly
addressing both data privacy and system responsiveness. Their framework reinforces the suitability of
Petri nets for modeling real-time mitigation strategies and structural dependencies across distributed
medical devices, validating the core assumptions behind the CSPN portion of our study. A broader
review of trust, security, and privacy in high-speed smart city infrastructures is proposed by Iftikhar et
al. [9], who highlight the challenges faced by edge-enabled architectures, including smart hospitals,
when enforcing mitigation policies that may inadvertently degrade QoS. Their findings confirm the lack
of formal tools for quantifying SLA violations under adversarial pressure, motivating our comparative
modeling strategy. Buyya et al. [10] outline a comprehensive vision for QoS-driven edge computing in
smart hospital systems, identifying mitigation-induced latencies and node isolation as critical design
concerns. Although their work does not involve formal modeling, it provides valuable context for the
architectural scenarios we simulate, particularly in terms of mitigation throughput and alert propagation
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delays. Carramifana et al. [11] employ agent-based simulations to evaluate healthcare infrastructure
resilience under cyber and pandemic stress. Unlike our hybrid CSPN-MAM approach, their model
focuses on strategic policy evaluation rather than formal stochastic analysis. Nonetheless, both studies
share the goal of assessing dynamic QoS degradation and recovery. Bobbio et al. [12] provide a systemic
risk analysis of Health IoT and contact tracing infrastructures under cyber warfare scenarios. Their
modeling strategy integrates CSPNs and MAMs to analyze the cascading effects of cyberattacks in
complex healthcare ecosystems, with a focus on data breaches and functional degradations. The current
article positions itself at the intersection of formal modeling and system-level resilience analysis in
smart healthcare infrastructures. Unlike prior works that rely solely on Petri nets [7, 8] or agent-based
simulations [11], this study combines CSPNs with MAM:s to capture both short-term, discrete-event
dynamics and long-term, population-level trends. While architectural overviews and systematic reviews
have highlighted the tension between cybersecurity and QoS [9, 10], they lack executable models to
quantify SLA violations or simulate mitigation strategies under adversarial conditions. Bobbio et al.
emphasize system-wide resilience metrics and systemic failure propagation, with a primary concern for
data privacy violations and contact-tracing vulnerabilities. In contrast, our work focuses on Quality of
Service (QoS) guarantees under targeted attacks, with a specific emphasis on mitigating latency, SLA
violations, and ensuring operational continuity in smart hospitals. Moreover, our CSPN implementation
incorporates dynamic alerting and human operator overload, while Bobbio et al. adopt a more static
modeling of networked IoT nodes. Finally, we extend the analysis through confidence intervals over
multiple simulation runs, offering statistical robustness that complements their more deterministic
performance profiles.

6. Conclusions

This study investigated the interplay between cybersecurity enforcement and QoS preservation in smart
hospital environments through a comparative modeling approach. By applying both a CSPN and a
MAM to a shared healthcare scenario, we addressed two key research questions.

In response to RQ1, our results confirm that CSPNs and MAMs offer complementary insights into
the cybersecurity—QoS trade-off. The CSPN enables fine-grained tracking of transient behaviors such
as operator overload, mitigation latency, and SLA violations at the transition level. The incorporation
of confidence intervals in CSPN simulation results has further enhanced the model’s diagnostic power
by exposing the range and likelihood of SLA breaches under adversarial variability. These confidence
intervals clarify system stability and confirm that a notable share of mitigations still exceed SLA
limits. The MAM, in contrast, abstracts the system into agent-level dynamics and reveals macroscopic
degradation trends, making it more suitable for studying long-term resilience and equilibrium under
persistent threats.

Addressing RQ2, we find that MAMs can approximate the overall evolution of degradation and recov-
ery patterns reasonably well, especially over extended time horizons. However, they fail to reproduce
sharp discontinuities and local saturation effects evident in the CSPN. These include bottlenecks in
mitigation paths and operator overloads that critically impact SLA compliance. While MAMs offer



analytical tractability and scalability, their assumptions of homogeneity and continuous dynamics
smooth out localized violations, limiting their utility in high-resolution SLA analysis.

Overall, the dual-modeling strategy underscores the value of combining discrete-event formalisms
with differential equation-based abstractions to achieve a balanced view of cyber-physical system perfor-
mance. CSPNs offer detailed temporal resolution and now—thanks to confidence intervals—quantitative
reliability bounds, making them indispensable for short-term diagnostics and SLA validation. MAMs,
in turn, scale effectively to larger systems and longer horizons, offering efficient evaluation of global
resilience patterns. Each model has intrinsic limitations: CSPNs face scalability challenges, while MAMs
omit heterogeneity and tail risks.
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