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Abstract
This paper addresses the critical challenge of imbalanced datasets in data-driven cybersecurity, affecting model
efficacy. It investigates the impact of data quantity and quality management through random undersampling on
multiclass classification using the UNSW-NB15 dataset and Support Vector Classifiers (SVC). Furthermore, it
explores a quantum perspective by examining quantum SVC with different sampling methods. Obtained results
show that balanced datasets, achieved via undersampling, yield superior classification performance. While
quantum approaches demonstrate fast learning, current noise limitations are noted. This work underscores the
importance of data preprocessing and highlights future avenues for quantum machine learning in robust threat
detection.
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1. Introduction

Cybersecurity is a fundamental quality aspect of Information and Communication Technologies aiming
to, e.g., restrict access to sensitive data, protect critical infrastructure from disruption, and ensure
national security against digital espionage and sabotage. The digital landscape poses persistent and
increasingly difficult threats, challenges, and evolving issues, including sophisticated ransomware
attacks, widespread phishing campaigns, distributed denial-of-service (DDoS) attacks, and insider
threats, to name a few. Such problems may be affected by rapidly evolving attack vectors, the increasing
complexity of systems, human error, and the growing vulnerabilities in Internet of Things (IoT) devices.
To address them, a combination of proactive and reactive solutions is consistently required. Proactive
measures include, e.g., threat intelligence, vulnerability management, security by design principles,
encryption, firewalls, and intrusion prevention systems. Reactive measures encompass approaches
such as robust incident response frameworks, digital forensics, prompt patch management, intrusion
detection systems (IDS), and comprehensive malware analysis.

Models are of strategic importance in addressing both approaches. Models are usually used to design
and to assess computing system Cybersecurity aspects, and are particularly useful for predicting and
identifying threats as well as for assessing their impact. But, for such a purpose, they need large amount
of data to either fit statistical parameters and distributions of white-box models or to train black-box
(e.g. machine learning) ones. This is moving the focus of cybersecurity research on datasets and data
management, towards data-driven cybersecurity.

As a consequence, cybersecurity data management presents significant challenges regarding data
availability, quantity and size, i.e. the number of data points available in a dataset. Cybersecurity datasets,
indeed, are typically quite unbalanced. Attack events, such as man-in-the-middle attacks, worm infec-
tions, malware propagation, denial-of-service (DoS) attacks, SQL injection, cross-site scripting (XSS),
and privilege escalation, are inherently rare in real-world observations. Furthermore, cybersecurity data
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quality impacts on quantity, implying preprocessing activities such as filtering, cleaning, aggregation,
and fusion that may affect the dataset size. Data scarcity in cybersecurity may lead to biased and
misleading representation of normal versus anomalous activities.

Considering classification problems and machine learning models, therefore, dealing with data
quantity and quality in cybersecurity analysis is of utmost importance. Widely unbalanced datasets
may lead to model overfitting, where the model learns the majority class too well and performs poorly
on the rare attack instances. Conversely, small datasets can result in low accuracy and generalizability,
failing to capture the complexity of real-world phenomena.

This paper performs an in-depth analysis of unbalanced datasets. It applies undersampling techniques
to obtain balanced datasets with different sizes. These modified datasets are then compared against
their original, unbalanced counterparts. The objective is to determine a proper size and optimal
mixture among classes for effective classification problems. Even different computational paradigms
are considered within this comparison, including classical and quantum computing approaches.

The results obtained from investigating a real-world cybersecurity dataset provide interesting insights.
The study demonstrates the effectiveness of random undersampling techniques. Furthermore, it reveals
better performance with balanced datasets, as opposed to unbalanced ones. This trend is much more
evident and further highlighted by increasing the dataset size to widely unbalanced ones.

The remainder of the paper is organized as follows. Section 2 introduces and defines data-driven
cybersecurity, while Section 3 provides the background solutions and technologies for its enforcement.
Section 4 reports a case study on network intrusion detection systems based on the well-known UNSW-
NB15 dataset [1, 2], dealing with classification problems exploiting both classical and quantum ML
models. Section 5 closes the paper with some final remarks.

2. Data-driven Cybersecurity

Data-driven cybersecurity is an emerging approach that leverages data science and technologies such
as advanced analytics, machine learning, and vast amounts of security-related data to enhance the
detection, prevention, and response to cyber threats [3]. Data-driven security fundamentally redefines
the approach to cyber defense by leveraging computational analysis of extensive datasets to detect,
predict, and mitigate threats. This paradigm shifts from reactive, signature-based detection to a proactive,
adaptive posture, driven by insights extracted from various security telemetry sources [4]. The core
principle involves transforming raw, heterogeneous security data—including network traffic logs, system
event records, user behavior profiles, and vulnerability scans—into actionable intelligence through
sophisticated analytical techniques.

This paradigm shift from traditional, reactive security measures to proactive data-centric methodolo-
gies has become essential as cyber threats grow in complexity and frequency. The increasing complexity
and frequency of cyber threats necessitate this evolution. By processing structured, semi-structured, and
unstructured data, organizations can derive actionable insights that inform robust security strategies,
thereby enhancing overall resilience against cyber attacks [5].

At its heart, data-driven security relies heavily on machine learning (ML) and deep learning algo-
rithms. These models are trained on historical and real-time data to identify intricate patterns indicative
of malicious activity or anomalies that deviate from established baselines [6]. This approach harnesses
advanced analytics, machine learning (ML), and extensive security-related datasets to improve the de-
tection, prevention, and response to cyber threats [4]. ML algorithms facilitate real-time adaptation and
anomaly detection, significantly reducing the time required to identify and mitigate threats. Empirical
evidence suggests that security teams employing data-driven techniques exhibit a swifter response
to security breaches compared to those relying on conventional methods, underscoring the criticality
of data-centric strategies in modern cybersecurity frameworks [7]. Furthermore, the application of
predictive analytics empowers organizations to anticipate potential threats before their materialization,
marking a significant evolution in the cybersecurity landscape [8].

Despite its demonstrable advantages, data-driven cybersecurity encounters several inherent chal-



lenges. These include issues pertaining to data quality, the complexities of regulatory compliance, and
the imperative for effective inter-team collaboration. The reliance on diverse data sources necessitates
rigorous data management practices to ensure the accuracy and relevance of information, as suboptimal
data quality can inherently compromise threat detection capabilities. Moreover, organizations must
diligently navigate the intricate landscape of evolving data privacy regulations while simultaneously
optimizing model performance to mitigate false positives and combat alert fatigue. Data-driven security
systems, particularly in areas like smart grids, face challenges in integrating diverse data sources and
ensuring real-time analysis [9]. Similarly, for Android systems, flexible data-driven security models are
explored to address emerging threats [10]. Smart cities also present opportunities and challenges for
data-driven cybersecurity [11].

As the cybersecurity landscape continues its dynamic evolution, the emphasis on data-driven method-
ologies is projected to intensify, solidifying its role as a vital component of organizational security
strategies. The continuous progression of technologies such as artificial intelligence (AI) and machine
learning is poised to further amplify the potential of data-driven cybersecurity in advanced threat
management, thereby reinforcing its indispensable significance in safeguarding sensitive information
within an increasingly digitized global environment. This includes applications in industrial control
systems, where multilayer data-driven cyber-attack detection systems are being developed based on
network, system, and process data [12]. The big data era also emphasizes the shift from merely securing
big data to leveraging data for enhanced security [13]. This data-driven approach aims to improve
autonomous systems through data analytics and cybersecurity [14].

3. Methods

3.1. Machine learning

Machine learning (ML) enables systems to learn patterns from data without explicit programming. It
involves training models on datasets to make predictions or decisions. This process involves defining a
problem, collecting a dataset, data cleaning and feature engineering, selecting and training a model,
evaluating it and deploying the trained model. This section contains brief introduction to the ML; for
more detailed exposition please refer, for example, to [15].

A dataset is a structured collection of data items, typically represented as a matrix where rows corre-
spond to samples and columns represent features. For the supervised learning, the dataset additionally
contains the labels for each data item that represent the ground truth value. Formally, the dataset is
denoted by X = {x1, . . . ,x𝑛} ∈ R𝑚×𝑛, the corresponding labels are denoted by 𝑦𝑖 ∈ 𝒞, where 𝒞 is an
arbitrary finite set, 𝑖 = 1, . . . , 𝑛, and each class is denoted by C𝑘 = {x𝑖 ∈ X | 𝑦𝑖 = 𝑘}, where 𝑘 ∈ 𝒞.
By definition, C𝑗 ∩C𝑘 = ∅ for 𝑗 ̸= 𝑘, and

⋃︀
𝑘∈𝒞 C𝑘 = X. Once the dataset is defined, the next step is

to split it into training and testing subsets to evaluate model performance.
The dataset X is divided into training Xtrain and testing Xtest subsets to evaluate model performance:

X = Xtrain ∪Xtest; Xtrain ∩Xtest = ∅. The training set is used to train the model, while the test set
assesses its generalization to unseen data. Common splits include 80% training and 20% testing, with
stratified sampling to maintain tasks (i.e. the training and testing datasets contain the same proportion
of items of different classes). This ensures that the model performance is measured on representative
data.

Building on this, multi-class classification is a supervised learning task where the goal is to assign
input data to one of multiple classes. Unlike binary classification, which distinguishes between two
classes, multi-class problems require models to differentiate between three or more categories (e.g.,
classifying images into “cat,” “dog,” “bird”, or, as in our case, different types of attacks). To evaluate such
models, specific metrics are used.

One of the metrics to evaluate the model effectiveness is the 𝐹1 score. This metric balances precision
(TP/(TP + FP)) and recall (TP/(TP + FN)), addressing trade-offs between false positives (FP) and false
negatives (FN). For multi-class problems, the macro-averaged 𝐹1 score, the unweighted mean of 𝐹1

score for all classes, provides a balanced measure of model performance.



There are a multitude of methods that can be used to solve the classification problem. One such
method is the use of support vector machines (SVMs). SVMs identify the optimal hyperplane to
separate classes in feature space. The Support Vector Classifier (SVC) is an implementation of SVM for
classification. Formally, SVC solves the following optimization problem

maximize
(𝛼1,...,𝛼𝑚)

∑︀𝑚
𝑖=1 𝛼𝑗 − 1

2

∑︀𝑚
𝑖=1

∑︀𝑚
𝑗=1 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝜅(x𝑖,x𝑗),

s.t. 0 ≤ 𝛼𝑗 ≤ 𝐶 and
∑︀𝑚

𝑖=1 𝛼𝑖𝑦𝑖 = 0,

where 𝜅(x𝑖,x𝑗) = x𝑖 · x𝑗 denotes the dot product, the weights 𝛼𝑗 are associated with the support
vectors (the points closest to the separating hyperplane), and 𝐶 is a regularization hyperparameter.

A key technique in SVMs is the kernel trick, which maps input data into a higher-dimensional space
using an arbitrary kernel function 𝐾(x𝑖,x𝑗) instead of the dot product. This allows linear separation
of non-linearly related data without explicitly computing the transformation, improving efficiency and
flexibility. One of the most widely used kernels is the Radial Basis Function (RBF) kernel.

The RBF kernel, defined as 𝐾(𝑥, 𝑦) = exp(−𝛾‖𝑥 − 𝑦‖2), where 𝛾 controls the kernel influence,
is a popular choice for non-linear problems. By mapping data into an infinite-dimensional space, it
effectively captures complex, non-linear relationships. This makes the RBF kernel particularly valuable
in scenarios where data is not linearly separable.

3.2. Imbalanced datasets and sampling

In machine learning, sampling refers to the process of selecting a subset of data from a larger dataset to
train models. This is particularly critical when dealing with imbalanced datasets, where one class (the
majority class) significantly outnumbers the other (the minority class): i.e. if some class 𝒞𝑖 outnumbers
other classes 𝒞𝑗 : |𝒞𝑖| ≫ |𝒞𝑗 |. Proper sampling techniques help ensure that models are trained on
representative data, reducing bias and improving generalization. Building on this, undersampling
methods are specifically designed to address class imbalance by removing some instances in the
majority class.

To address class imbalance, undersampling techniques are employed to balance the dataset by
decreasing the number of majority class samples. Two common approaches are:

Random undersampling. This method randomly selects a subset of the majority class samples
to match the number of minority class samples. For example, if the minority class has 100 instances
and the majority class has 1,000, random undersampling would randomly retain majority samples.
While simple and computationally efficient, this approach risks losing important information from the
majority class, as random selection does not consider the distribution or relevance of the samples.

NearMiss methods. There are several closely related undersampling techniques that selects majority
class samples based on their proximity to the minority class. This study focuses on NearMiss-3 method,
which operates in three steps:

• For each minority sample, identify its 𝑘 nearest neighbors from the majority class.
• select the 𝑘 samples that are farthest from the minority sample (to avoid overfitting to noisy or

outlier samples).
• Retain these selected majority samples for the balanced dataset.

This method preserves the structure of the majority class while focusing on regions where the minority
class is most prevalent, making it more effective than random undersampling in retaining meaningful
patterns.

By incorporating these undersampling strategies, it is possible to mitigate the effects of class imbalance
and achieve robust and fair model performance.



3.3. Quantum computing

Quantum computing leverages principles of quantum mechanics, such as superposition and entan-
glement, to perform computations that are infeasible for classical computers. Unlike classical bits,
which exist in a state of 0 or 1, quantum systems use qubits (quantum bits) to encode information in a
superposition of states. This enables parallelism and exponential speedups for specific problems, such as
factoring large numbers or simulating quantum systems. This section provides a basic introduction into
quantum computing; for a more detailed introduction please refer, for example, to the textbook [16].

A qubit is the fundamental unit of quantum information. It is represented as a quantum state in a
two-dimensional Hilbert space:

|𝜓⟩ = 𝛼|0⟩+ 𝛽|1⟩,
where 𝛼, 𝛽 ∈ C are complex amplitudes satisfying |𝛼|2 + |𝛽|2 = 1. The basis states |0⟩ and |1⟩
correspond to classical bits, but the qubit can exist in any linear combination of these states.

For 𝑛 qubits, the combined quantum state lives in a 2𝑛-dimensional Hilbert space. For example, two
qubits can be in a state:

|𝜓⟩ = 𝛼|00⟩+ 𝛽|01⟩+ 10⟩+ 𝛿|11⟩,
where |𝛼|2 + |𝛽|2 + |𝛾|2 + |𝛿|2 = 1. This state can exhibit entanglement, where the qubits’ states are
correlated in ways impossible for classical systems. A classic example is the Bell state:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩).

The notation |𝑗⟩ for a number 𝑗 ∈ Z≥0 means that |𝑗⟩ is a basis state with qubit states corresponding
to the binary notation of the number 𝑗. For example, the state |10⟩ can be written as |2⟩, and in general,
the state of an 𝑛-qubit system is written as |𝜓⟩ =

∑︀2𝑛−1
𝑗=0 𝛼𝑗 |𝑗⟩.

Quantum states can be modified by performing quantum operations. They are described by unitary
matrices 𝑈 , which preserve the norm of the quantum state. For a single qubit, the Hadamard gate 𝐻
and Pauli gates 𝑋,𝑌, 𝑍 are fundamental:

𝐻 =
1√
2

(︂
1 1
1 −1

)︂
, 𝑋 =

(︂
0 1
1 0

)︂
, 𝑌 =

(︂
0 −𝑖
𝑖 0

)︂
, 𝑍 =

(︂
1 0
0 −1

)︂
.

Pauli gates can be used to define rotation gates, for example, 𝑅𝑌 (𝜃) = 𝑒−𝑖𝑌 𝜃/2, where 𝜃 ∈ [0, 2𝜋):

𝑅𝑌 (𝜃) =

(︂
cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)

)︂
.

Another important gate is the controlled-NOT (CNOT) gate, which is analogous to the “if-then-else”
construction in the classical programming:

CNOT =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ .

To extract the information from the quantum state, one needs to perform measurements and get a
classical outcome. For a qubit in state |𝜓⟩ =

∑︀2𝑛−1
𝑗=0 𝛼𝑗 |𝑗⟩, the probability of measuring |𝑗⟩ is |𝛼𝑗 |2.

After the measurement, the state collapses to the observed basis state, so subsequent measurements
will return the same outcome with probability 1.

Quantum Machine Learning (QML) combines principles from quantum computing and machine
learning. It is used to process and analyze data, often offering advantages in speed, scalability, or
expressivity over classical methods. QML typically outsources some step in the ML pipeline to a
quantum computer. In order to work with classical data on a quantum computer, it is necessary to
encode it in a quantum state.

Data encoding is the process of translating classical input data into quantum states. Common
encoding strategies include:



• amplitude encoding that represents 2𝑞-dimensional data as the amplitudes of a 𝑞-qubit quantum
state:

|𝜓(x𝑖)⟩ =
1

‖x𝑖‖

𝑚∑︁
𝑗=1

𝑥𝑖,𝑗 |𝑗⟩ ,

• angle encoding that represents data as the angles of rotations, for example:

|𝜓(x𝑖)⟩ =
𝑚∏︁
𝑗=1

𝑅
(𝑗)
𝑌 (𝑥𝑖,𝑗)

⃒⃒
0⊗𝑚

⟩︀
,

The choice of encoding depends on the task, the quantum hardware, and the desired trade-off between
expressivity and complexity.

This study adopts a heuristic real amplitudes encoding
⃒⃒
𝜓qra(x𝑖)

⟩︀
from the Qiskit circuit li-

brary [17], denoted here as QRA. This technique involves several layers of angle encoding interspersed
with entanglement layers. Since it is difficult to express the encoded state in closed form, the corre-
sponding circuit is described. Let the number 𝑞 of qubits and the number of layers 𝐿 be such that
𝑛 = 𝑞𝐿, where 𝑛 is the number of features. Then⃒⃒

𝜓qra(x𝑖)
⟩︀
= 𝑈1(x𝑖)𝑉 𝑈2(x𝑖)𝑉 × · · · × 𝑉 𝑈𝐿(x𝑖),

where 𝑈𝑗(x𝑖) =
⨂︀𝑞

𝑘=1𝑅Y(𝑥𝑖,𝑗𝑞+𝑘) rotates the qubits to encode some of the features (i.e.
𝑥𝑖,(𝑗−1)𝑞+1, 𝑥𝑖,(𝑗−1)𝑞+2, . . . , 𝑥𝑖,(𝑗−1)𝑞+𝑞). The entanglement layer 𝑉 performs CNOT gates between
𝑖-th and 𝑖+ 1-th qubits for 𝑖 ∈ {𝑛− 2, 𝑛− 3, . . . , 1, 0}. See Figure 1 for an example.

𝑅𝑌 (𝑥𝑖1) 𝑅𝑌 (𝑥𝑖5)

𝑅𝑌 (𝑥𝑖2) 𝑅𝑌 (𝑥𝑖6)

𝑅𝑌 (𝑥𝑖3) 𝑅𝑌 (𝑥𝑖7)

𝑅𝑌 (𝑥𝑖4) 𝑅𝑌 (𝑥𝑖8)

Figure 1: RA circuit for 𝑛 = 8, 𝑞 = 4, 𝐿 = 2

4. Case study and experiments

4.1. Dataset and testbed

This study is based on the widely adopted UNSW-NB15 dataset [1, 2] created for network intrusion
detection systems. Additionally, it has been cleaned from contaminant features [18]. Each data item in
the dataset is the description of a network packet. After the cleaning and encoding the categorical feature
as an ordinal, the training dataset contains 𝑛 = 175 341 data items with𝑚 = 32 numeric features, while
the test dataset contains 82 332 data items with the same features. Each data item is associated with two
labels: first, it is labeled as a “normal” packet or as an “attack” packet; second, it is further labeled by
different attack types, i.e. “Backdoor”, “DoS”, “Exploits”, etc. (10 classes in total). The dataset is highly
imbalanced: for example, the smallest class “Worms” contains only 130 data items, while the “Exploits”
class contains 33 393 data items. The whole dataset is denoted by X = {x1, . . . ,x𝑛} ∈ R𝑚×𝑛, the
corresponding labels are denoted by 𝑦𝑖 ∈ 𝒞, where 𝒞 = {Backdoor, . . . ,Worms} and 𝑖 = 1, . . . , 𝑛, and
each class is denoted by C𝑘 = {x𝑖 ∈ X | 𝑦𝑖 = 𝑘}, where 𝑘 ∈ 𝒞. By definition, C𝑗 ∩C𝑘 = ∅ for 𝑗 ̸= 𝑘,
and

⋃︀
𝑘∈𝒞 C𝑘 = X.



All tests were performed on a machine with the following characteristics. CPU: AMD Ryzen 9 5950X,
RAM: 64 GiB, OS: Linux, kernel: 6.6.74-gentoo, Python: 3.12.9, jupyter-core: 5.7.2, numpy: 2.2.2, qiskit:
1.3.2, qiskit-machine-learning: 0.8.2, scikit-learn: 1.6.1. The source code is available upon request.

4.2. Undersampling to Balance the Dataset

The case study focus on the effects of balancing the dataset on the multiclass classification of a packet
into various attack classes. In this experiment, given the required class size ℓ, the random undersampling
method selects a random subset C′

𝑘 ⊆ C𝑘 for each class 𝑘 ∈ 𝒞. If ℓ ≤ |C𝑘| then |C′
𝑘| = ℓ; otherwise,

the random undersampling method selects the whole class: C′
𝑘 = C𝑘 , and |C′

𝑘| < ℓ. After the random
undersampling step, the support vector classifier [19] is trained to classify the data items on the selected
subset X′ =

⋃︀
𝑘∈𝒞 C

′
𝑘 of training dataset and its performance is assessed on randomly selected 100

data items (10 data items per class) from test dataset by using 𝐹1 score averaged over all classes.
The experiment results are reported in Figure 2. Note that the maximum average 𝐹1 score roughly

coincides with ℓ = 130, which is the maximum ℓ value when the selected subset is still balanced, so
training on an imbalanced dataset doesn’t improve the results.

Figure 2: Average F1 score (higher is better) for different training set sizes: the left shows the distribution of
values with boxplots (note the log-scale for x-axis); the right shows the median values in the region around the
maximum value.

4.3. Quantum Approaches for Learning

Another (preliminary) result of this study is the investigation of the behavior of the quantum SVC in
conjunction with different sampling techniques such as random undersampling and the NearMiss-3
method [20], which is based on geometric ideas. The heuristic quantum kernel real amplitudes [17]
(denoted here as QRA-8-4; the kernel uses 8 qubits and 4 layers of encoding gates) is compared with
classical RBF kernel. In the experiment, the sampler selects a subset of the training set, and the SVC
is trained on this subset. The average 𝐹1 scores obtained in the experiment are reported on Figure 3.
As it can be seen, the classical methods outperform the quantum one, and the random undersampling
technique overperforms the NearMiss-3 method in both classical and quantum paradigms.

5. Conclusions

This study rigorously investigated the interconnected challenges of data quantity and quality in mul-
ticlass classification within data-driven cybersecurity, while also providing a preliminary quantum
perspective. Our experiments with the UNSW-NB15 dataset unequivocally demonstrate the critical
influence of data imbalance on model performance. We found that strategically managing data quantity



Figure 3: Average F1 score (higher is better) for quantum and classical training methods.

through random undersampling techniques to create balanced training sets significantly enhances
classification accuracy and generalizability compared to using highly imbalanced datasets, thereby
proving the direct link between data quality improvements and model efficacy. This finding highlights
the essential role of diligent data preprocessing and balancing strategies in developing effective threat
detection systems.

Furthermore, our preliminary exploration into the quantum perspective of machine learning, specifi-
cally with the quantum Support Vector Classifier, revealed promising fast learning capabilities. This
suggests a compelling potential for quantum computing to offer novel computational paradigms for
cybersecurity analytics in the future. However, it is crucial to acknowledge the current technological
limitations, particularly concerning noise effects in contemporary quantum hardware, which underscore
the need for continuous advancements in both quantum hardware and algorithm development.

Future work should focus on a deeper exploration of advanced data balancing techniques, including
more sophisticated methods for managing data quantity and quality beyond simple undersampling.
Investigating the robustness and scalability of quantum machine learning models on larger and more
diverse cybersecurity datasets will be paramount. Additionally, developing and implementing effective
noise mitigation strategies will be key to unlocking the full potential of quantum approaches and
transitioning these theoretical perspectives into practical, high-impact cybersecurity applications.
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