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Abstract
We propose a robust method for estimating the pose of occluded objects by hand during user interaction in 

a Head-Mounted Display (HMD) environment. Existing approaches to the occlusion problem often predict 
the hand and object jointly to improve efficiency, but their applicability in HMD environments is limited by 
high computational cost and poor generalization to occluded objects. Our approach applies hand pose changes 
to object pose changes based on the confidence levels of both the hand and the object. Evaluation conducted  
on 20 distinct grasping pose types demonstrated a lower Mean Per-Vertex Position Error (MPVPE) compared 
to conventional interpolation methods. Consequently, the proposed method enables effective estimation of 
occluded objects using fewer computational resources.
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1. Introduction

Figure 1: The structure of the hand-guided object tracking system

Object recognition plays a critical role in scenarios where users interact with objects via Head-
Mounted Display (HMD) devices. When real-world objects held by users are not accurately tracked 
and such information fails to be transmitted to the device, natural interaction becomes impaired [1]. 
Although existing object detection models perform well under conditions where objects are clearly 
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visible, recognition accuracy tends to degrade significantly when occluded by the user’s hand. Hence, 
addressing occlusion problems in computer vision is essential for providing realistic immersion in 
HMD environments [2].

Current approaches to occlusion mitigation predominantly employ deep learning and generative 
models to simultaneously predict hand and object states, often improving temporal efficiency com-
pared to sequential prediction methods [3][4][5]. However, these methods exhibit three main limita-
tions. First, as demonstrated in [3] and [5], while robust occlusion-resistant prediction is feasible, the 
computational load is high, making these methods resource-inefficient for HMD devices where limited 
processing power is available, often consuming excessive computation for accurate hand-object pose 
estimation. Second, as shown in [4], limitations arise with previously unseen objects, leading to poor 
generalization and inability to cover diverse hand-object interaction patterns typical in real-world 
HMD usage. Third, these methods typically do not consider fail-safe strategies for pose estimation or  
object tracking failures, which are crucial for practical deployment in HMD scenarios.

We proposes a method that estimates the current pose and position of objects occluded beyond a 
certain threshold by the user’s hand by leveraging hand motion information. Our approach enables  
robust inference of occluded object movement with low computational overhead by applying hand 
pose changes to object pose estimation. The method integrates object recognition results from both 
current and previous frames, assessing the sufficiency of available information. When data confidence 
is adequate, the method heavily relies on current frame information for pose estimation; otherwise, it 
references prior frames’ data to compensate for missing or unreliable inputs. This temporal data uti-
lization ensures applicability to time-series data and supports real-time object pose estimation on re-
source-constrained HMD platforms.

Quantitative evaluation was performed using multiple hand-object interaction scenarios [6], repre-
senting various object grasping and rotation patterns. Frames were segmented based on object rotation 
direction, and the Mean Per-Vertex Position Error (MPVPE) between predicted and ground truth poses 
was computed. Experimental results show that applying hand pose variations to object pose estimation 
significantly outperforms conventional interpolation techniques in tracking occluded objects during 
hand-object interactions in HMD settings.

The contributions of this study are threefold. First, it presents an efficient pose estimation method 
tailored for real-time HMD interaction environments under limited computational resources, specifi-
cally addressing occlusion caused by the hand. Second, it enhances robustness by leveraging both 
current and past frame recognition data, enabling compensatory estimation when immediate informa-
tion is insufficient or unreliable. Third, it validates improved tracking performance and generalization 
through comprehensive quantitative experiments involving realistic hand-object grasping and pose 
scenarios. Consequently, this work demonstrates the feasibility of reliable, real-time occluded object 
pose estimation for collaborative and interactive applications utilizing HMD devices. 

2. Related Works

2.1. 3D Hand-Object Poses Estimation

Research on pose estimation in hand-object interaction scenarios from images or videos continues 
to advance. The H+O framework [7] proposed a method that simultaneously performs 3D hand-object 
pose estimation, object recognition, and action classification using a single RGB image, rather than 
separately estimating 3D poses of the person or objects. However, since it relies solely on a single  
RGB input, the lack of depth-related information poses inherent limitations when the hand and object 
occlude each other, adversely affecting prediction accuracy. More recently, HOISDF [3] employed 
Global Signed Distance Fields (SDF) to jointly estimate 3D hand-object poses even under occlusion. 
While this approach benefits  from modeling contact and proximity between the hand and object 
simultaneously, it suffers from the high computational and memory demands of SDF processing. 
Additionally, severe occlusions necessitate further refinement to accurately capture fine details at  
contact regions. Similarly, Lin et al. [4] proposed a method that selectively shares or separates features 



at the backbone network level to improve simultaneous pose estimation from a single RGB image 
under occlusion conditions. Despite its effectiveness, this approach lacks generalization to unseen 
objects and does not sufficiently address the challenges posed by invisible hand-object contact areas.

Other research efforts have sought to apply alternative AI models to hand-object pose estimation. 
Semi-supervised frameworks have been proposed to enhance pose estimation performance under 
occlusion and limited 3D labeled data from single images [8]. However, the absence of 3D object 
models resulted in no pseudo-labeling for objects, and the quality of such labels critically influences 
performance,  limiting  comprehensive  resolution  in  complex  multi-object  and  hand  interaction 
scenarios.  Additionally,  some studies  employ  deep  learning-based  feedback  loop  frameworks  to 
simultaneously estimate 3D hand and object poses purely via deep neural networks [9]. Nonetheless, 
these  deep  learning-based  object  detection  approaches  generally  entail  substantial  computational 
overhead,  rendering  them inefficient  for  deployment  on  resource-constrained  HMD devices  [5].  
Therefore, our approach aims to provide a less computationally demanding alternative compared to 
existing methods that require high computational costs.

2.2. Human-Object Interaction Detection (HOI detection)

Research on detecting how human-object  interactions (HOI) occur continues to advance.  The 
UnionDet  framework  [10]  proposed  a  single-stage  prediction  approach  that  directly  infers  the 
interaction regions of human-object pairs, aiming to overcome the speed limitations of conventional 
multi-stage  HOI  detection  methods.  However,  it  exhibited  limitations  in  handling  overlapping 
instances and multiple simultaneous interactions. Another approach utilized a transformer-based model 
to predict sets of humans, objects, and interactions without requiring explicit human-object matching 
[11]. This method benefits from eliminating computationally expensive post-processing, resulting in 
significantly faster inference speeds. Nevertheless, it faces increased computational costs when dealing 
with complex images containing numerous human object interaction instances. More recently, attempts 
have been made to combine Convolutional Neural Networks (CNNs) with multi-resolution wavelet 
analysis to address the trade-off between computational speed and detection accuracy [12]. However, 
this approach infers interactions solely from 2D images without incorporating full 3D information, 
limiting its applicability in scenarios where depth information is essential. Therefore, instead of jointly 
predicting both the hand and the object within the interaction space, our approach applies the motion 
of the hand to the target object, thereby reducing computational overhead and improving inference  
speed.

3. Method

3.1. System Structure

In real-world interactions, the hand and object typically move independently until contact occurs. 
Therefore,  temporal  information  is  utilized  to  set  the  initial  pose  of  the  stationary  object,  and 
subsequent hand pose variations are applied to update the object pose when it becomes occluded. 
Because the occluded object’s pose is predicted using the remaining recognition results, this approach 
operates efficiently without requiring additional computational resources.

The system is broadly divided into two stages. The first stage recognizes the hand and object 
separately based on 2D images from the camera viewpoint. We assume that 3D information of the 
target object is provided beforehand, and an RGB-D image captured either immediately at contact  
onset or while in contact is supplied as input. This enables pose estimation of the object in its initial  
static state, as well as the detection of the hand pose at the instant of contact. From the moment hand-
object interaction begins, an object detection model is employed to evaluate the recognition confidence 
of both hand and object. To improve reliability, cropped regions based on the estimated hand and object 



locations are fed into the object detection model. These detection results subsequently inform the 
application of hand pose changes to update the object pose.

The second stage estimates the pose based on the detection confidence scores from the first stage.  
When the object detection confidence is sufficiently high, indicating accurate recognition, the object 
pose is updated using a dedicated pose estimation model. Conversely, if the object confidence is low, 
the most recently recognized object pose is updated by applying hand pose variations. This update 
process also considers the confidence of the hand pose estimation as well as the temporal interval since 
the last object pose update. 

Figure 2: The Data processing pipeline of the hand-guided object tracking system 

3.2. Object pose estimation based on hand pose

Equation (1) describes the object pose update method in the second stage introduced in Section 3.1. 

Let  V O t
 denote the object poses at time t . The predicted object poses are obtained by applying a 

rotational transform matrix M H t
, representing the hand’s rotation at time t , to the object poses from 

the previous time step V O t -1
, scaled by a weighting coefficient α t . Formally:

V O t
=α t ∙M H t

∙V O t -1
 .                                (1)

Here, α t  quantifies the degree of trust in the previous object pose estimate when computing the 

current pose update.

α t ={1 ,                                                                  if  S t
obj≥τ obj

No  update ,                           if  S t
obj <τ obj  and  S t

hand <τ hand

(λΔt ∙S t
hand ) ,                                                          otherwise

         (2)



Equation (2) defines the calculation of the weighting coefficient α t . Let S denote the recognition 

confidence score for the object or the hand at time t , and let τ be a predefined confidence threshold. If 
the recognition confidence for either the object or the hand falls below τ, it is considered that the re-
spective entity is insufficiently visible, and the system either fully references or disregards the previ-
ous frame’s information accordingly. In other cases, the hand confidence is used with a decay factor  

proportional to the number of frames elapsed since the last reliable object pose update to calculate α t . 

When both the object confidence and the hand confidence drop below respective minimum thresholds, 
the current frame’s pose estimation becomes unreliable. Therefore, the system preserves the pose from 
the most recent reliable frame to minimize estimation error.

4. Experiment

4.1. Dataset

Figure 3: Representative scenarios of 20 grasp methods in the SHOWME dataset [3]

To consider scenarios in which objects are partially occluded by the hand, the SHOWME dataset 
[6] was utilized. This dataset defines 20 grasp types derived from the comprehensive grasp taxonomy 
of 33 types presented in [13], and it comprises a total of 96 scenarios based on variations in object 
categories and hand movements. In this study, experiments were conducted using a subset of 20 
scenarios, each corresponding to one of the 20 selected grasp types. The selection criteria focused on 
scenarios where the modeling information of rendered results aligned well when projected onto the 
RGB images. To account for fast-moving objects, not all data recorded at 30 frames per second (fps) 
was used; instead, one frame was sampled every 10 frames, effectively yielding a 3 fps frame rate for 
the experiments. Camera parameters, including the distance between the camera and the object, were 
directly utilized as provided in the dataset.

4.2. Performance Metric

The evaluation metric employed in this study is the Mean Per-Vertex Position Error (MPVPE). 
MPVPE quantifies the average positional discrepancy between the vertices of the ground truth (GT) 
mesh and those of the estimated mesh. For both the proposed method and the interpolation baseline, 
predicted object meshes are separately saved as obj files to compute this metric. Specifically, the 
MPVPE is calculated by comparing the obj files of the predicted object mesh against the corresponding 
ground truth object mesh provided in the SHOWME dataset. Lower MPVPE values indicate smaller 
deviations between the predicted and actual vertex positions,  thus representing higher estimation 



accuracy. The results are analyzed by plotting graphs for each grasp type and rotation direction to 
provide detailed performance insights. 

4.3. Experimental Method

Prior to deployment on HMD devices, the original dataset values are treated as ground truth and  
used  to  evaluate  the  prediction  accuracy.  The  method  follows  the  previously  described  system 
workflow. The model is applied to cropped images focusing exclusively on the hand and object regions 
within each frame of the dataset. This cropping aims to isolate the hand-object interaction, preventing 
interference from other objects in the scene and ensuring that confidence scores reflect  only the 
scenario-specific hand and object. The crops were generated using the rendered results provided by the 
SHOWME dataset.

As a baseline, an interpolation method was considered. When the confidence scores for the hand and 
object in the current frame fall below the threshold used in the proposed method, the object pose is 
estimated as the midpoint between the previous and subsequent frames. This interpolation approach is 
analogous to the proposed idea of predicting object pose based on the hand pose change between 
consecutive  frames.  The  interpolation  is  applied  specifically  at  the  point  where  the  weighting 

coefficient is calculated during object pose estimation at time t  in the system. Otherwise, all other 

processing steps remain identical. This setup enables direct comparison of evaluation metrics between 
the proposed method and the interpolation baseline.

Significant variability exists in object detection rates across scenarios, heavily influenced by the 
training quality of the detection model. Experiments were conducted not only using the raw detection 
results but also by artificially adjusting detection rates per scenario. This allowed assessment of which 
method  performs  better  relative  to  the  detection  model’s  effectiveness.  When  using  unmodified 
detection results, object pose prediction is triggered only if the object fails to be detected by the  
detection model, which in this study is Mediapipe. When detection rates are artificially manipulated,  
undetected frames are randomly prioritized for pose prediction using the respective methods. Hand 
pose confidence for prediction always relies on Mediapipe model outputs.

Figure  4: How  to  group  minimum  rotation  units  for  scenario  rotation  order  and  direction 
classification



Figure 5: Types of rotation classification using the k-means algorithm (6 types)

When utilizing the dataset, the grasping method, object type, and rotation sequence/direction are not 
consistent. Therefore, we additionally grouped the data into rotation units of 10 frames, which served 
as the minimum rotation segment for classification. In other words, one unit corresponds to a 100-
frame video (10 data points). For all 20 scenarios, these units were grouped, and the corresponding 
rotation vectors were classified into rotation types using the k-means clustering algorithm. Based on 
these rotation types, we examined which rotation directions each scenario is more specialized in,  
thereby enabling more accurate estimation. The number of clusters was experimentally adjusted by 
varying  k  until  clusters  with  identical  directions  and  motion  tendencies  no  longer  appeared. 
Consequently, the six clusters obtained represent distinct directions or tendencies (i.e., consistency of 
rotation).

5. Discussion

5.1. Comparison of MPVPE with Interpolation Methods

First, when specifying different detection rate ratios, we compared the Mean Per-Vertex Position 
Error (MPVPE) results for each scenario and detection rate using both the proposed method and the 
interpolation baseline. The results demonstrated that the proposed method consistently achieved lower 
MPVPE values across all scenarios. Scenario 14 (Medium Wrap) exhibited a substantial performance 
gap favoring the proposed method regardless of  the object  detection rate.  In  contrast,  Scenarios  
4(Inferior Pincer), 8(Tripod), and 13(Quadpod) showed relatively minor differences between methods, 
irrespective of detection rates. These scenarios involve grasps on smaller objects, which may contribute 
to smaller  absolute errors in both methods.  Additionally,  although these scenarios feature longer 
durations with diverse rotations, the smaller radius of object rotation results in relatively low errors 
even when using conventional interpolation. 

 
Figure 6: MPVPE results by scenario (left) and detection ratio (right) when using the method of this 
study and the interpolation method when the detection result ratio is specified.

Across  all  detection  rate  variations,  the  proposed  method  consistently  outperformed  the 
interpolation approach.  Furthermore,  as  detection rates  decreased,  the performance gap widened, 
indicating that the proposed method is particularly effective when recognition confidence is low. 
Conversely, performance stabilized when detection rates surpassed a certain threshold. This plateau is 



likely due to the decay factor in the weighting coefficient α t , which diminishes proportionally with 

the number of frames elapsed since the last reliable object pose update. Higher detection rates reduce 
the number of frames over which decay applies, leading to more stable pose estimations.

To further analyze results  by rotation type,  scenarios were grouped into six rotation clusters.  
Clusters 0 and 2 have opposite rotation directions, so they revealed significant differences in MPVPE 
despite  the symmetrical  rotation axes.  For  example,  Scenarios 9 (Parallel  Extension),  10 (Power 
Sphere), and 11 (Precision Sphere) frequently exceeded an MPVPE of 0.002 in Cluster 0, whereas in 
Cluster 2, most scenarios remained below this threshold. This discrepancy is hypothesized to result 
from longer occlusion durations caused by the rotation direction. Longer occlusions increase the 
number  of  frames  over  which  decay in  pose  confidence  is  applied,  thereby  reducing  prediction 
reliability and increasing error. Thus, the proposed method demonstrates better performance when 
occlusion occurs in shorter, repeated intervals rather than in prolonged continuous segments.

Figure 7: Classification by rotation direction – the upper and lower figures represent opposite 
rotations. (If the rotation does not exist in the scenario, it is removed from the figure)

Next, the comparison between Clusters 4 and 5 focused on whether rotation direction remained 
consistent or changed midway. Cluster 4 generally exhibited higher MPVPE values, with Scenario 13 
(Quadpod) showing a twofold increase compared to Cluster 5. This result suggests that predicting 
object pose from hand pose changes is more straightforward when rotation direction remains constant. 
When rotation direction changes, the hand’s rotational velocity typically decreases, resulting in longer 
occlusion intervals and greater difficulty in accurate prediction.



Figure 8: Classification by rotational consistency – Cases where the rotation direction changes 
midway(upper), Cases where the rotation direction is constant (lower). (If the rotation does not exist  
in the scenario, it is removed from the figure)

5.2. Resource Usage/Computation Time

Table 1. presents the resource consumption and computation time of the proposed system. For the  
first stage, object detection, we employed the Mediapipe object detection model. The reported results 
include the entire process, from detecting the target regions of the hand and object in the given RGB 
images, cropping these regions, and storing the outputs. For the second stage, pose estimation, the 
original pipeline should include estimating past and current hand poses using a hand pose estimation 
model, followed by object pose estimation based on those hand poses. However, considering that the  
outcomes can vary significantly depending on the specific hand pose estimation model employed, we 
excluded that part and calculated values only for the remaining structural components of the system. 
The tested scenario involved the tripod sequence, conducted under the same conditions as the MPVPE 
comparison experiment described in Section 5.1, using a total of 126 frames.

Table 1
Step-by-step operation time/resource usage

Step Object detection Pose estimation

Average FPS ↑ 11.88 281.669

Average time per frame [ms] ↓ 83.11 3.55



Total FLOPs [TFLOPs] ↓ 0.063 0.252

Max Memory Usage [MB] ↓ 688.03 2261.82

According to a recent study analyzing the impact of frame rate on user experience in virtual reality 
environments [14], most users perceive a sense of real-time interaction at frame rates above 30 FPS, 
while a frame rate of 60 FPS or higher is recommended to ensure full immersion and to mitigate 
simulator sickness. Since the FPS value achieved by the system proposed in this study exceeds 60 FPS, 
it can be considered sufficient for users to perceive real-time responsiveness. Furthermore, because the 
proposed method requires only a minimal computational time, it is expected that parallel utilization of 
multiple models would not introduce significant performance issues. Given the computational speed 
of the example object detection model employed, it can be inferred that the overall system’s FPS is 
ultimately determined by the specific object detection and hand pose estimation models utilized. 
Therefore, if real-time capable object detection and hand pose estimation models are employed, the  
system architecture demonstrated in this study can be effectively applied to HMD devices in real-time 
scenarios.

In addition, the FLOPs value of the proposed method is relatively small when compared to the 
computational capabilities of current HMD devices and smartphones, thereby confirming its feasibility 
for deployment on such platforms. Finally, the maximum memory consumption of approximately 2 
GB further indicates that the system is well within the RAM capacity of modern HMD devices,  
ensuring its practical applicability [15].

6. Conclusion

We proposed a method to estimate the pose of objects occluded by the hand through the utilization 
of  hand  pose  changes.  To  evaluate  the  performance  advantage  of  our  method  compared  to  the 
conventional interpolation approach, tests were conducted on 20 grasp types from the SHOWME 
dataset[6]. Our method consistently outperformed the baseline regardless of the performance of the 
object  detection  model.  Furthermore,  even  when  experiments  were  stratified  by  object  rotation 
directions, the proposed method demonstrated superior performance with a substantial margin. 

In addition, we calculated the step-by-step processing time and computational resource usage to 
examine whether the proposed method could be utilized on real-time HMD devices. Since our method 
requires very little time per frame, we demonstrated that it can be applied in terms of processing time, 
provided  that  the  object  detection  and  hand  pose  estimation  models  to  be  used  together  are  
appropriately selected for real-time operation. Furthermore, in terms of FLOPs, we confirmed that the 
method  is  applicable  when  considering  the  performance  levels  of  HMD  devices  and  general 
smartphones.

Although the SHOWME dataset used in this study contains certain instances of directional changes, 
frames exhibit predominantly linear tendencies. Hence, it remains necessary to evaluate whether the 
proposed approach can be generalized effectively to datasets characterized by more complex motion 
patterns. Furthermore, since the SHOWME dataset is limited to single-hand manipulation of an object, 
additional validation is required in scenarios that align more closely with the research objective—
namely, multi-user interaction with objects in immersive HMD environments, where multiple users 
may manipulate a single object simultaneously. In addition, to comprehensively evaluate different 
grasping methods, we utilized a dataset that can be classified into 20 grasp types and performed 
experiments under the assumption that the hand and object in the images are observed from the user’s 



perspective. To further validate the user’s direct manipulation of objects, we plan to conduct additional 
user studies.

In this regard, future work may consider incorporating a weighting term that accounts for complex 
movements. For example, there is determining which hand’s confidence level should be applied when 
estimating  object  pose  changes  in  multi-hand  scenarios.  Such  an  extension  would  enhance  the 
robustness of the proposed estimation method for interaction with virtual avatars, which constitutes the 
final objective of this research. Additionally, as this study has prioritized performance validation of the 
proposed method, relatively less attention has been devoted to the selection of the hand pose estimation 
model. Further investigations into model selection could thus provide a more comprehensive guideline 
for the effective application of the proposed framework.
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