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Abstract
The growing demand for remote monitoring through digital twins highlights the importance of integrating
both structural accuracy and dynamic awareness of physical spaces. While 3D reconstruction technologies
enable highly precise digital twin environments, they typically remain static, failing to reflect real-time changes.
Conversely, CCTV systems provide live monitoring but only as separate 2D video streams, requiring users to
mentally map them to the reconstructed 3D environment. To address this gap, we propose a 2D–3D projection-
based pipeline that incorporates dynamic object trajectories from monocular video into a 3D reconstructed digital
twin. Our method leverages widely available indoor CCTV feeds, combining them with reconstructed static
scenes and camera pose information to back-project object masks and recover placement and orientation. A
stabilization filter further ensures robustness against noise and mask deformation. This approach offers a practical
foundation for integrating dynamic objects into digital twins, facilitating more consistent spatial perception and
real-time monitoring of remote environments.
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1. Introduction

Digital Twin (DT) technology is gaining significant attention as an innovative paradigm that connects
the physical and digital worlds, enabling the continuous reflection of a real environment’s state, behavior,
and changes over time in a virtual environment [1, 2]. Unlike traditional modeling approaches, which
were often limited to static representations or simplified simulations, DTs integrate heterogeneous data
sources—such as sensor data, image data, and simulation results—to provide a continuously updated
virtual environment [3]. This characteristic is particularly crucial in various application domains such
as smart manufacturing, healthcare, urban infrastructure management, and autonomous driving, where
the demand for real-time monitoring, predictive analytics, and decision support is rapidly increasing
[4, 5]. In this context, the usability and reliability of a DT are directly determined by the level of fidelity
with which the virtual model reflects the structural, spatial, and temporal characteristics of the physical
environment [1, 6]. Therefore, fidelity has become a core concept in DT research, extending beyond
mere geometric representation or physical model accuracy to a comprehensive discussion that includes
the realism of dynamic interactions and behavioral patterns [2, 7].

While fidelity can be defined in various ways [4], it essentially refers to how accurately a DT captures
not only the static properties of a real environment but also its dynamic states and transitions over time.
For example, if a DT of a manufacturing site only reproduces the geometric shape of machinery and
fails to reflect dynamic elements such as trajectories, its utility for predictive maintenance is limited [8].
Similarly, if a smart city’s DT includes only static infrastructure like buildings and roads but fails to
track the movement of mobile objects such as vehicles and pedestrians, it cannot sufficiently contribute
to traffic flow analysis or safety decision support [9]. These examples illustrate that the value of a DT
lies not merely in creating a visually precise digital replica, but in ensuring a functionally equivalent
level to reality by securing spatiotemporal consistency between the physical and virtual environments
[1]. However, achieving such high fidelity entails several challenges. While low-fidelity models can
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reduce computational resource consumption, discrepancies with reality may lead to degraded prediction
performance or erroneous judgments. Conversely, high-fidelity DTs require precise 3D reconstruction,
robust pose estimation, and reliable dynamic object tracking, thus demanding massive computational
loads and significant algorithmic complexity [10, 11]. Therefore, determining how to define and balance
the level of fidelity has emerged as a key challenge in DT research, especially in application contexts that
simultaneously require dynamic object recognition, real-time localization, and temporal consistency
[12].

In this context, research aimed at virtually reproducing real-world scenes has continued steadily. 3D
reconstruction is a prime example. Traditional pipelines for reconstructing 3D scenes from multi-view
cameras have widely used Structure-from-Motion(SfM) [13] to estimate camera poses and sparse points,
followed by Multi-View Stereo (MVS) [14] to produce dense depth and meshes. More recently, rapid
advances in neural reconstruction methods—most notably Neural Radiance Fields (NeRF)—have made it
possible to create and update high-precision 3D models of large-scale scenes [15, 16]. In particular, as
the accuracy of visual localization and the conversion pipelines between mesh-based and pointcloud-
based representations have matured [17, 18], it has become feasible to stably perform reconstruction
and maintenance of a scene’s geometry and material properties at industrial scale. These technical
foundations provide the continuously high-quality updatable spatial models required by DTs.

At the same time, progress in computer vision—object segmentation [19, 20], Multi-Object Track-
ing(MOT) [21], and Human Activity Recognition (HAR) [22]—has made it possible to quantitatively
characterize and measure object states and scene events from images and video streams. In addition, the
advent of vision-language models(VLMs) supports query-centric recognition and relational/descriptive
reasoning even for object and behavior categories that are not predefined, enabling robust integra-
tion of domain-specific knowledge into vision pipelines tailored to each use case [23]. These models
move beyond mere visualization of static scenes in Digital Twins to enable tracking, explanation, and
prediction of dynamic states.

Together, advances in 3D reconstruction and object understanding now make it feasible to operate
CCTV-equipped indoor environments (e.g., manufacturing facilities) as digital twins synchronized
with their physical counterparts. By leveraging a predefined 3D scene model and visual localization,
segmented objects from video streams can be registered into the 3D scene, ensuring spatiotemporal con-
sistency. In this paper, we focus on synchronizing dynamic objects and propose a method to reconstruct
their motion frame by frame within a virtual environment. We assume that a reconstructed static scene,
3D mesh models of dynamic objects, and accurate camera poses are available—assumptions that align
with the current state of 3D reconstruction, modeling, and localization technologies. From the input
image sequences, we extract object masks and incorporate predefined object and spatial information to
reinforce consistency between physical and virtual spaces, enabling high-fidelity representations of
dynamic objects in DT environments. This approach provides foundational techniques for implementing
dynamic digital twins in domains with frequent motion, such as manufacturing facilities and urban
settings.

2. Methodology

This section introduces a pipeline for high-fidelity DT representation of dynamic objects in indoor
scenes recorded by a static camera (e.g., CCTV). To this end, we assume the following are given: (i) a
3D reconstructed mesh of the static scene, (ii) a 3D mesh of the dynamic objects, and (iii) intrinsic and
extrinsic parameters of the camera. In particular, the camera pose estimated within the DT is assumed to
be aligned—via visual localization—with the coordinate frame of the physical camera used for capture.

Since the dynamic objects are predefined, we prompt SAM2 once at initialization to obtain per-frame
masks. From the pixel distribution in each mask, we compute a principal ray, which is then projected
into the world coordinate system using the camera parameters. The intersection of this ray with the
object’s mid-height plane yields the per-frame position, while the displacement between successive
positions determines the rotation, primarily yaw. To reduce inter-frame rotational instability caused



Figure 1: Overview of the proposed pipeline. Object masks are extracted from the input image sequence using
SAM2. In the mask projection step, a principal ray (white line) is computed. The object’s position is determined
from the intersection of this ray with the mid-height plane, while rotation is estimated from positional changes
across frames. A stabilization filter is then applied, and the pose list is generated with both position and rotation
values. If mask loss occurs between frames, any pose values that were not calculated are interpolated.

by mask deformation and noise, we apply a stabilization filter. Finally, if the position and rotation
values were not calculated due to complete mask loss, we interpolate them to maintain consistency. An
overview of the pipeline is shown in Figure 1.

2.1. Problem Statement

We define the proposed algorithm as F, as shown in Eq. 1. Here, 𝒮 denotes the 3D scene mesh and 𝑂
represents the target object model. The camera is defined as 𝐶 = (𝑇,𝐾), where 𝑇 = [𝑇𝑅, 𝑇𝑡] is the 3D
pose of 𝐶—with 𝑇𝑡 representing translation and 𝑇𝑅 representing rotation—and 𝐾 denotes the intrinsic
parameters. ℐ denotes the monocular RGB image sequence (i.e., video) captured by 𝐶 , and 𝐼𝑡 refers to
the image at frame 𝑡.

F(𝒮, 𝑂,𝐶, ℐ) = 𝒫 = {𝑃𝑡}𝑁𝑡=1 (1)

The 3D pose of 𝑂 at time 𝑡 is represented as {𝑥𝑡, 𝑦𝑡, 𝑧𝑡, 𝑅}, where 𝑅 ∈ 𝑆𝑂(3). The pose of 𝑂 on
the ground plane of the scene model 𝒮 at time 𝑡, computed by F and denoted as 𝑃𝑡, is defined in Eq. 2,
where 𝜃 denotes the yaw angle.

𝑃𝑡 = {𝑥𝑡, 0, 𝑧𝑡, 𝜃𝑡} (2)

2.1.1. 3D Mask Projection

To project 𝑂 from a 2D image onto the 3D scene, we first generate the target object mask 𝑀𝑡 on the
image 𝐼𝑡 using SAM2. 𝑀𝑡 is represented as an array of 2D pixels 𝑝𝑖 = (𝑢𝑖, 𝑣𝑖). For each pixel in the
mask, we define a ray 𝑟𝑝(𝑘) using 𝐶 , as shown in Eq. 3, where 𝑘 denotes the depth of ray. Finally, we
compute the ray set r𝑡 = {𝑟𝑀𝑡

𝑝1 , 𝑟𝑀𝑡
𝑝2 , ...} for 3D projection.

𝑟𝑀𝑡
𝑖 (𝑘) = −𝑇⊤

𝑅 𝑇𝑡 + 𝑘 𝑇⊤
𝑅𝐾−1

⎡⎢⎣𝑢𝑖𝑣𝑖
1

⎤⎥⎦ , 𝑘 > 0 (3)

However, these rays may be affected by mask noise or camera pose errors. To ensure robustness, we
compute the unit vector d̂ of ray, as defined in Eq.4.



d𝑟 = 𝑇⊤
𝑅𝐾−1

⎡⎢⎣𝑢𝑣
1

⎤⎥⎦ , d𝑟̂ =
d𝑟

||d𝑟||
(4)

The principal ray 𝑟̄𝑀𝑡(𝑘) is then defined as the mean of the unit vectors in r𝑡, as given in Eq. 5, where
|r| denotes the size of array.

𝑟̄𝑀𝑡(𝑘) =

∑︀r𝑀𝑡

𝑟 d𝑟̂

|r𝑀𝑡 |
𝑘 + 𝑇𝑡, 𝑘 > 0 (5)

2.1.2. Pose Calculation

As previously mentioned, the 3D mesh model of the object is predefined. Consequently, we can obtain
the bounding box of the dynamic object and determine its maximum height 𝐻 . We then compute the 3D
coordinates of the intersection point 𝑝 between the object’s principal ray 𝑟̄𝑀𝑡 and the horizontal plane
at 𝑦 = 𝐻/2. The corresponding ray parameter 𝑘 is determined by solving the ray–plane intersection:

𝑘* =
(𝐻/2)− 𝑜𝑤,𝑦

𝑑𝑤,𝑦
(6)

The full 3D position is then calculated as Eq 7:

𝑝 = 𝑟̄𝑀𝑡(𝑘*) (7)

Finally, by taking only the x and z values from this point 𝑝, we project it onto the ground plane
(𝑦 = 0) to place the object.

The position calculation allows us to determine the object’s placement for each frame. The object’s
direction of rotation is determined from the displacement vector 𝑣, calculated as the difference between
the current frame’s position, 𝑝𝑡, and the previous frame’s position, 𝑝𝑡−1.

𝑣𝑡 = 𝑝𝑡 − 𝑝𝑡−1 = ⟨𝑥𝑡 − 𝑥𝑡−1, 0, 𝑧𝑡 − 𝑧𝑡−1⟩ (8)

Although the object’s position and rotation can be computed, significant inconsistencies may arise
between consecutive frames if the masks are deformed or noisy. Such abrupt variations reduce fidelity,
as the rotation calculation directly reflects them. To address this, we apply a stabilization filter composed
of three components:

• Motion gating / deadband: Suppresses micro-jitters by treating negligible rotational changes
as zero when motion is minimal.

• Rate limiting: Constrains the maximum rotation angle per frame, ensuring smooth and consis-
tent turns.

• Exponential moving average (EMA) smoothing: Reduces noise by blending the newly
computed orientation with the previously filtered orientation using spherical interpolation.

By applying this process to each frame, we obtain the object’s position (𝑥, 𝑧) and yaw rotation 𝜃 for
the sequence. However, when the mask is completely missing, position and rotation cannot be computed
for those frames. To maintain temporal consistency during such dropouts, we linearly interpolate
both position and rotation across short gaps of up to 𝑁 consecutive frames. Let 𝑡0 < 𝑡1 be the valid
keyframes that bracket a gap of length 𝑚 = 𝑡1 − 𝑡0 − 1 ≤ 𝑁 . For any missing frame 𝑡 ∈ (𝑡0, 𝑡1), set
𝜆 = 𝑡−𝑡0

𝑡1−𝑡0
and compute using Eqs. 9 and 10.

𝑝𝑡 = (1− 𝜆)𝑝𝑡0 + 𝜆𝑝𝑡1 (9)

𝜃𝑡 = 𝜃𝑡0 + 𝑤𝑎𝑟𝑝𝜋(𝜃𝑡1 − 𝜃𝑡0)𝜆 (10)



In Eq 10, 𝑤𝑟𝑎𝑝𝜋(·) maps angles to (−𝜋, 𝜋] to ensure shortest-arc interpolation. Interpolation of sections
whose length exceeds 𝑁 may cause problems such as objects penetrating the scene, so they are not
interpolated and are left as post-processing targets.

The full procedure is summarized in Algorithm 1.

Algorithm 1 Algorithm F for dynamic object pose estimation.
Require: image sequence ℐ , 3D scene mesh 𝒮 , object mesh 𝑂, Camera 𝐶 = (𝑇,𝐾)
Ensure: object pose sequence 𝒫

1: for 𝑡← 1 to 𝑛 do
2: 𝑀𝑡 ← 𝑆𝐴𝑀2(𝐼𝑡) //Mask Image From Segment Anything Model 2
3: 𝑟̄𝑀𝑡(𝑘)←𝑀𝑎𝑠𝑘𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑀𝑡)
4: 𝐻 ← 𝐻𝑒𝑖𝑔ℎ𝑡(𝑂)

5: 𝑘* ← (𝐻/2)−𝑜𝑦
𝑑𝑦

6: 𝑝𝑡 ← 𝑟̄𝑀𝑡(𝑘*)
7: if 𝑡 > 1 then
8: 𝑣𝑡 ← 𝑝𝑡 − 𝑝𝑡−1

9: 𝜃𝑡 ← 𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔(𝑣𝑡, 𝑣𝑡−1) //Filtering with EMA, rate limit, deadband, motion gate
10: end if
11: 𝑃𝑡 = {𝑥𝑡, 0, 𝑧𝑡, 𝜃𝑡}
12: end for
13: if 𝐿𝑜𝑠𝑡𝐶𝑜𝑢𝑛𝑡({𝑃𝑡}𝑡0<𝑡<𝑡1) ≤ 𝑁 then
14: Interpolation(𝑃𝑡)
15: end if
16: return 𝒫

3. Evaluation

To evaluate the proposed methodology, we use a synthetic scene created in Unity. The object’s position
and rotation information is logged for each frame, and these data serve as the GT. The methodology is
then assessed by comparing and analyzing two sets of data against the GT: the data obtained with the
stabilization filter applied and the data obtained without it.

In Figure 2, during frames 0–20, the object moves short distances and performs specific actions while
largely stationary. From frames 21–35, it moves backward. Subsequently, the object moves straight,
turns to the right, and then to the left, before ending the sequence. The same positions are obtained
with both the filtered and unfiltered methods; however, the unfiltered method exhibits highly sporadic
rotational directions, whereas the filtered method maintains consistency. More detailed results are
provided in Figure 3. As illustrated in Figure 4, a masking error occurs between frames 30 and 40, leading
to a substantial position error in this interval. In addition, after frame 90, an occlusion is observed,
resulting in tracking failure and a further increase in position error.

As shown in Figure 3, between frames 0 and 40—where the inter-frame trajectory distance is short
and both in-place rotations and masking errors occur—the unfiltered method exhibits large rotational
fluctuations, whereas the filtered method maintains narrower fluctuations, demonstrating robustness to
noise. However, compared to the unfiltered method, the filtered method cannot immediately capture
rapid directional changes due to the maximum rotation speed limit observed during the right/left
turning section (frames 70–90).

Table 1 shows that applying the filter significantly reduces errors compared to the unfiltered method.
In particular, for the maximum angular error (MaxAE), the unfiltered method produced a large error of
approximately 179°, whereas the filtered method reduced this error to about 63°.



Figure 2: Scatter plot of object trajectories under three conditions: ground truth (GT), without stabilization
filter, and with stabilization filter. Each dot represents the object’s position, and arrows indicate the rotation
direction at each frame.

Figure 3: Yaw rotation values across frames for the ground truth (GT), filtered method, and unfiltered method.

4. Conclusion

This study proposes a lightweight pipeline that, after extracting masks using Segment Anything Model 2
(SAM2), performs mask projection, computes positions via the intersection between a principal ray and
a plane, and approximates rotation (yaw) using frame-to-frame motion vectors. In addition, to suppress
noises in the estimated rotation and ensure continuity along the time axis, we introduce a stabilization
scheme that combines Gating, Deadband, Rate Limiting, and an exponential moving average (EMA). By
incorporating this stabilization module, the system is designed to maintain spatiotemporal consistency
even in the presence of noise and occasional errors. This design is practically meaningful in that it
achieves computational efficiency suitable for real-time processing without complex optimization or
large-scale learning.



Figure 4: Frame-wise position error between the ground truth (GT) and each method. Masking errors occur
between frames 30–40, and occlusion after frame 90 further increases the error. The error is computed as the
absolute difference |GT−method|.

Table 1
Rotation angle error comparison between filtered and unfiltered methods.

Method RMSE MAE MaxAE

No-Filter 66.41 41.52 179.46
Filtered 27.83 20.69 62.93

Nevertheless, the proposed approach is structurally dependent on segmentation quality. Because
position and rotations are determined from masks produced by SAM2, a basic level of error is inherent,
and large errors may occur when occlusions are present or when SAM2 fails due to its performance
limits. Moreover, since rotation is determined by the motion vectors, it is difficult to correctly reflect
orientation in scenarios dominated by lateral or backward motion, in-place rotation or in-place actions.
Our method also assumes that objects remain in contact with the ground and therefore estimates only
3DoF (planar position and yaw); accordingly, it is not applicable to aerial objects (e.g., drones) or to
objects exhibiting substantial pitch/roll variations. To address these structural issues, future work
should introduce more robust methods for position and rotation estimation and extent the framework
to full 6DoF pose estimation.

Furthermore, it operates under the assumption that the camera extrinsics in the digital twin coordinate
system are estimated with very high accuracy through visual localization. However, even a small pose
error can bias the principal ray-plane intersection, inducing position and rotation drift. To mitigate
this, pose-stabilization strategies—such as drift compensation using semantic landmarks and sensor
fusion with additional modalities (e.g., IMU)—should be considered. For dynamic object models with
large intra-class shape variation, the fixed height assumption may not be valid if the shape dispersion
is large, a fixed-height assumption may be invalid, potentially distorting position and orientation
estimates. Future work should estimate object height online from frame-by-frame observations to
preserve robustness when object models are inaccurate.

The proposed method was evaluated only in a synthetic virtual scene using quantitative metrics.
For future work, in-the-wild validation is needed by applying the method to real video within a
digital twin constructed from a 3D reconstruction of the physical environment. It is desirable to
conduct multi-site, multi-scenario experiments spanning diverse indoor locations, camera setups, and
object categories, and to complement them with user studies that qualitatively assess the temporal
consistency of dynamic-object trajectories. The qualitative evaluation can use panel-based Likert-scale
ratings or pairwise comparisons. Raters inspect side-by-side overlays on the source video and top-down
trajectory visualizations, and statistical significance is assessed using appropriate tests. Such a combined
quantitative–qualitative evaluation in real settings would allow a more rigorous demonstration of the
generalizability and robustness of the proposed method.



In summary, the proposed method presents a concise and portable foundation that goes beyond
the visualization of static structures in Digital Twins and aims for high-fidelity dynamic reproduction
approaching functional equivalence for dynamic objects in scenes. Its significance lies in providing
a balanced trade-off among lightweight implementation, real-time performance, and consistency in
application domains dominated by dynamic factors-such as manufacturing, logistics, and smart cities.
By pursuing the aforementioned extensions, we expect to progressively resolve challenges such as
occlusion and in-place motion, thereby further improving the reliability and applicability of dynamic
Digital Twin implementations.
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