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Abstract
As drone numbers rise and illegal flights become more common, security and privacy issues grow
more serious. To monitor and manage drone flights effectively, this paper proposes YOLOv11-mini, a
lightweight model improved from YOLOv11. By using GhostConv, C3Ghost, and pruning, YOLOv11-mini
keeps high detection accuracy while cutting model size by 87%, making it fit for edge devices. This
paper tests the model on a small custom nano-size drone dataset and applies data augmentation to
boost performance. Results show that with augmentation, YOLOv11-mini increases mAP50 by about 4%
over the unaugmented model, with accuracy only 2% lower than the original YOLOv11. This shows the
model’s strong advantages and potential in resource-limited settings.
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1. Introduction

With the rapid increase in the number of drones, illegal drone flights continue despite repeated
bans, frequently leading to incidents such as flight disruptions, public disturbances, and personal
injuries. In addition to issuing relevant laws and regulations, it is also urgent to strengthen
comprehensive supervision of drones [1]. However, achieving around-the-clock real-time
monitoring of drones through manpower alone is difficult. Furthermore, due to their small
size and high speed, drones can easily be misidentified or completely overlooked by human
observers, especially under low-light conditions. Therefore, it is imperative to leverage more
advanced and efficient technological solutions to achieve real-time monitoring and precise
control of low-altitude drone activities, such as deploying edge devices for real-time target
detection and identification.

In recent years, the rapid development of deep learning has driven continuous breakthroughs
in object detection algorithms [2, 3, 4, 5, 6]. From the initial Region-CNN(R-CNN) [7], through
Single Shot MultiBox Detector(SSD) [8], to the rapidly evolving YOLO series [9], each techno-
logical iteration brings new vitality and expands the possibilities of object detection.
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Although R-CNN achieves high detection accuracy, its processing speed is slow, so it is
not suitable for real-time applications [10]. SSD usually provides higher accuracy than YOLO.
However, its large model size and high computational cost make it hard to meet the demands of
scenarios that require strong real-time performance. In contrast, YOLO achieves an effective
balance between accuracy and speed, making it especially suitable for real-time detection. In
summary, lightweight improvements based on YOLO significantly enhance inference speed
while maintaining detection accuracy, which makes it an ideal choice for latency-sensitive low-
altitude applications such as real-time drone monitoring. This article adopts the YOLOv11 model
proposed by Rahima Khanam and Muhammad Hussain in 2024 [10] as the baseline architecture.
Although the original YOLOv11 achieves excellent detection accuracy and inference speed,
its model size remains relatively large. For edge devices with limited computing resources,
such as drones, this makes smooth deployment challenging and may lead to inference delays,
falling short of real-time monitoring requirements. However, existing research mostly focuses
on introducing attention mechanisms, improving feature extraction modules, or optimizing
loss functions to enhance detection accuracy, while paying little attention to the deployment
and adaptation of the YOLO model on edge devices with limited computing resources. This is
particularly critical in anti-drone scenarios, where edge devices such as surveillance cameras
and drones have constrained computing power, creating an urgent need to significantly reduce
model size and computational overhead while maintaining detection performance.

Therefore, to achieve efficient monitoring and precise control of low-altitude drone activ-
ities, this paper proposes a lightweight object detection model based on YOLOv11, named
YOLOv11-mini. By redesigning the backbone network and introducing lightweight convolution
modules, the model size is reduced by approximately 87% compared to the original YOLOv11,
enabling efficient deployment on resource-constrained edge devices. With the help of edge
devices equipped with lightweight detection models, small drones in the monitoring area can
be automatically detected and identified around the clock. This not only improves the efficiency
and accuracy of monitoring but also significantly reduces the workload of manual patrols.

The main contributions of this paper are as follows:

• In response to the detection requirements for nano-sized drones in low-altitude flight
scenarios, this paper independently collects high-resolution images and complete detailed
annotations to construct a dedicated dataset. This fills the gap of insufficient publicly
available data and lays the foundation for subsequent model training and evaluation.

• In the YOLOv11 framework, we remove the redundant detection layer and replace several
standard convolutions with GhostConv and C3Ghost, thereby significantly reducing
the number of parameters and computational cost. As a result, the model size reduce
by approximately 87% compared to the original version, making it more suitable for
deployment on edge devices with limited computing power.

• Systematically compares various data augmentation strategies (such as Mosaic and Cut-
Mix), selects the optimal combination, and effectively improves the model’s robustness
and generalization ability. Experiments show that the enhanced YOLOv11-mini achieves
a 4% improvement in mAP50 compared to the unenhanced version, with merely a 2%
decrease in accuracy relative to the original YOLOv11, thereby significantly reducing the
computational burden while maintaining high detection performance.
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In summary, through comprehensive improvements in dataset construction, lightweight
network design, and data augmentation optimization, this paper enables the model to maintain
high detection accuracy while reducing its model size by 87%, thereby meeting the requirements
of real-time drone monitoring in resource-constrained devices.

The remainder of this paper is organized as follows. Section 2 reviews related work.Section 3
introduces the dataset and the YOLO models relevant to this study. Section 4 provides a detailed
description of the data augmentation methods and evaluation metrics used. Section 5 presents
the experimental results along with an analysis. Finally, Section 6 concludes the paper.

2. Related work

The rapid development of drone technology has driven in-depth research into low-altitude
monitoring and counter-drone systems. The YOLO series of models has become a hot topic in
research and applications in this field due to its effective balance between detection accuracy
and real-time performance. To meet the needs of real-time monitoring in complex environments,
many scholars have made various improvements to the YOLO architecture, proposing more
adaptive detection methods.

2.1. Improvements for the YOLO series

Ghazlane Yasmine et al. propose a series of improvements based on the YOLOv7 model, in-
corporating the CSPResNeXt module into the backbone, a transformer block with the C3TR
attention mechanism, and a decoupled head structure to enhance the model’s performance.
While ensuring an accuracy of 0.97, their model achieves an inference speed of 0.02 milliseconds
per image, successfully achieving an optimal balance between inference speed and detection
performance [11]. Xueqi Cheng et al. propose an IRWT-YOLO model based on YOLOv8 that
integrates object detection and image segmentation, incorporates BiFormer into the backbone
network, and introduces the RCSCAA and DCPPA modules to improve the detection of weak
objects. The proposed model improves the robustness and effectiveness of the original model in
detecting weak objects under complex infrared conditions, thereby addressing the problems of
low object visibility and background interference in infrared UAV image detection [12]. Ruixi
Liu et al. propose a distributed anti-drone system based on YOLOv5, which achieves auto-
matic target locking through a mechanical structure, effectively improves detection accuracy,
and adopts distributed cluster deployment to overcome the shortcomings of detection blind
spots and target loss. This provides a deployment concept for airport countermeasures against
lightweight UAVs and offers theoretical guidance for future anti-UAV strategies [13]. Juanqin
Liu et al. propose a detection method called GL-YOMO, which combines the traditional YOLOv5
framework with multi-frame motion detection technology. It enhances the recognition of small
drone targets by fusing features of different scales and introducing an attention module. In
addition, they integrate the Ghost module into the network to further reduce computational
cost and improve inference efficiency, thus achieving a better balance between accuracy and
real-time performance and underscoring its potential in UAV detection applications [14].
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3. Main work

3.1. Dataset creation

The image acquisition device is a Nikon Z50II mirrorless camera (APS-C DX format) equipped
with a NIKKOR Z DX 18-140mm f/3.5-6.3 VR lens kit. The target is a nano-sized low-altitude
UAV, namely the Bitcraze Crazyflie 2.1. The standard on nano-sized drone is shown in Figure 1.
Images are captured from different heights and angles under bright indoor, dark indoor, and
bright outdoor conditions. The self-constructed nano-sized drone dataset shows in Figure 2.

Figure 1: Drones taxonomy by vehicle class size

Figure 2: Presentation of a self-made nano-size drone dataset

The initial dataset consists of a total of 413 images of nano-sized drones. Python scripts
are used to randomly sample 10% of the images as a validation set, 10% as a test set, and the
remaining 334 images as the training set for model development and evaluation. In the training
set, 173 shots are taken indoors and the remaining 139 shots are taken outdoors. All images are
annotated using LabelImg to generate YOLO-format label files for nano-sized drones.

3.2. Yolov11 network structure

YOLOv1, proposed by Joseph Redmon in 2015, treats object detection as a regression problem,
allowing the detection performance to be directly optimized end-to-end [15]. YOLOv11 is
officially released on October 1, 2024, and is developed based on the YOLO series framework,
leading to significant improvements in detection accuracy and efficiency.
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Figure 3: Overall architecture of the YOLOv11 network

Figure 3 shows that YOLOv11 introduces the C3k2 block and the convolutional block with
parallel spatial attention(C2PSA) attention mechanism [10].

Among these components, C3k2 plays a key role in enhancing the feature extraction capability.
It is an optimized version of the traditional CSP bottleneck structure in YOLOv11 [16], with its
core feature being the use of two parallel convolutional layers. This design enables the extraction
of features across different channels, thereby improving the model’s adaptability to complex
scenes. This makes data processing more efficient while maintaining high accuracy. C2PSA
enhances multi-scale feature extraction by combining the Cross Stage Partial(CSP) structure
and the Pyramid Squeeze Attention(PSA) mechanism. Additionally, it dynamically weights
channel features through the Squeeze-and-Excitation(SE) mechanism, thereby strengthening
the responses of important channels.
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In summary, YOLOv11 achieves significant improvements in detection accuracy while main-
taining real-time performance by integrating advanced convolution techniques and innovative
attention mechanisms. This structural simplification not only significantly reduces the number
of network parameters and computational overhead, thereby improving inference speed, but
also prevents excessive aggregation of fine-grained small target information under a large
receptive field. This helps to maintain the detection sensitivity and discrimination capability
for small targets.

3.3. Lightweight improvement of the YOLOv11 model: YOLOv11-mini

We propose a lightweight model YOLOv11-mini based on YOLOv11 with its architecture shown
in Figure 4.

Figure 4: Overall network architecture of the improved YOLOv11mini

YOLOv11 performs well in object detection and other visual tasks due to its outstanding
inference speed and high accuracy. However, when deployed on edge devices with limited
computation resources, YOLOv11 still suffers from certain limitations. This paper draws on the
Ghost module and feature layer pruning concepts to systematically prune and modify YOLOv11
[17], designing YOLOv11-mini, which retains only two output layers.

Based on YOLOv11, we set both the depth and width multipliers to 0.25 and reduce the
number of layers in the neck and head, significantly decreasing the network’s depth and width.
To further reduce the computational burden, we replace the standard convolution with the
lightweight GhostConv module and substitute the original C3k2 structure with C3Ghost, which
effectively eliminates redundant computations, reducing the number of parameters and FLOPs.

In the standard YOLOv11 architecture, there are typically three detection heads, namely p3,
p4, and p5, each responsible for detecting objects at different scales. In particular, the p5 output
feature map, with its larger receptive field, is mainly used for detecting larger objects in images.
However, in our target application scenarios, the drones are generally small and rely less on
large-scale feature layers. Therefore, in designing YOLOv11-mini, we remove the p5/32 output,
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which is more sensitive to large object detection, and retain only the p3/8 and p4/16 output
branches, which are better suited for detecting small and medium-sized objects.

This structural simplification not only significantly reduces the number of network parameters
and computational overhead, thereby improving inference speed, but also avoids the excessive
aggregation of fine-grained small target information under a large receptive field. This helps
maintain the detection sensitivity and discriminative capability for small targets.

In addition, we retain the lightweight SPPF module to enhance the receptive field and feature
aggregation capability while further reducing the model size. After these improvements, the
lightweight YOLOv11-mini has a simpler network structure and a smaller model size, making it
highly suitable for deployment on edge devices with limited computing resources.

4. Experimental data and evaluation metrics

In this section, we use a self-constructed drone dataset and evaluate multiple data augmentation
methods to determine the optimal solution. In addition, we introduce the performance evaluation
metrics employed in this study.

4.1. Experimental data and data augmentation methods

The computer operating system used in this experiment is Windows 11 Professional Edition.
VSCode is employed to remotely connect to the server for training and testing. Python 3.10
is used as the primary programming language, and PyTorch 2.7.0 (CUDA 11.8) serves as the
deep learning framework. The dataset is a nano-sized drone dataset that is self-collected and
annotated, comprising a total of 413 images, with 334 used for training, 40 for testing, and 39
for validation.

This experiment uses a total of seven data augmentation methods, which can be divided
into two categories: optical content transformation and geometric texture transformation. The
visual effect is shown in Figure 5 and is described in detail as follows.

1. Optical content transformation

• Color-light: Slight adjustments are made to the hue, saturation, and brightness of the im-
age. The amplitude is small, slightly altering the visual characteristics while maintaining
the fundamental features of the original image, thereby improving the model’s robustness
to minor lighting changes.

• Color-medium: Building on Color-Light, it applies a wider range of brightness and contrast
adjustments, yielding more noticeable visual effects and further enhancing the model’s
generalization ability.

• Color-medium-noise: Building on Color-Medium, Gaussian noise is superimposed to
simulate sensor interference in real-world scenarios, enhancing adaptability to noisy
environments.

• Color-medium-clahe: Building on Color-Medium, CLAHE is applied to improve local
contrast, making it suitable for scenes with uneven lighting or unclear details.

2. Geometry Texture Transformation
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• Mosaic: Randomly splicing 4 images into one to increase the number of target in each
batch and to enrich the combination diversity, which is especially beneficial for small
object detection.

• Mixup: The two images and their labels are linearly mixed in proportion to improve the
model’s robustness to partial occlusion and enhance its adaptability to complex scenes.

• Cutmix: Rectangular regions are randomly cropped and pasted between two images,
and labels are mixed according to the area ratio to further improve the robustness and
generalization ability of the model in complex scenes.

Figure 5: Examples of image data augmentation: (a) Original image; (b) Color-light; (c) Color-medium;
(d) Medium-clahe; (e) Medium-noise; (f) Mixup; (g) Mosaic; (h) Cutmix.

4.2. Evaluation metrics

To evaluate the accuracy of the YOLOv11-mini model in recognizing nano-sized drones, this
paper adopts performance metrics commonly used in object detection, including Precision,
Recall, mAP50, mAP50-95, as well as the number of parameters and model size. The definitions
of these metrics are provided below.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(2)

𝐴𝑃 =

𝑁∑︁
𝑛=1

(𝑅𝑛+1 −𝑅𝑛)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑥(𝑅𝑛+1) (3)

𝑚𝐴𝑃 =
1

𝐶

𝐶∑︁
𝑗

𝐴𝑃𝑗 (4)
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The Average Precision (AP) of all classes is the area of the region below the precision-recall
curve. 𝑅𝑛 represents the recall of the 𝑛th value, and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑥(𝑅𝑛+1) represents the
highest precision value in the range 𝑅𝑛 to 𝑅𝑛+1. The mAP is calculated by averaging the AP of
each class in the dataset. Specifically, mAP50 refers to the mean AP when the IoU threshold is
fixed at 0.5, whereas mAP50-95 is calculated by averaging the mAP values over IoU thresholds
ranging from 0.5 to 0.95.

5. Experimental results and analysis

In this section, we compare and analyze the performance of the YOLOv11 model before and
after lightweight optimization, and evaluate the performance of the YOLOv11-mini model using
various data augmentation strategies.

5.1. Model performance comparison

We use Parameters, Model Size, Precision, Recall, mAP50, and mAP50-95 as performance
evaluation metrics to compare the YOLOv11 model before and after lightweight optimization.
The results are shown in Table 1.

Table 1
Evaluation of model performance before and after lightweighting

Model Parameters(M) Size(MB) Precision Recall mAP50 mAP50-95

YOLOv11 2.5 5.5 0.897 0.894 0.927 0.473
YOLOv11-mini 0.22 0.7 0.87 0.795 0.867 0.436

Compared to YOLOv11, the YOLOv11-mini model has significantly fewer parameters and a
smaller model size. However, its performance metrics such as Recall and mAP50 are slightly
lower than those of YOLOv11. To improve these metrics, we further apply data augmentation
techniques to enhance the model.

We use Precision, Recall, mAP50, and mAP50-95 as performance evaluation metrics to
assess the YOLOv11-mini model under eight different data augmentation strategies: base, light,
medium, noise, clahe, mosaic, mixup, and cutmix. The results are shown in Table 2.As shown
in Table 2, after applying Clahe data augmentation, the model achieves a precision of 1.0, a
recall of 0.837, and an mAP50 of 0.905, demonstrating the best overall performance among the
seven data augmentation methods and significantly improving detection accuracy. Notably,
the Mosaic method yields the highest mAP50-95 value (0.49), while the Medium and Cutmix
strategies also exhibit strong overall performance.

5.2. Ablation experiments and results analysis

After comparing the training effects of seven data augmentation methods on the YOLOv11-mini
model, four methods that demonstrated better performance—medium color, clahe, mosaic, and
cutmix—are initially selected. Subsequently, ablation experiments are conducted to compare the
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Table 2
Model performance evaluation of different data augmentation methods

Data augmentation methods Precision Recall mAP50 mAP50-95

Base 0.915 0.795 0.867 0.436
Light 0.938 0.777 0.867 0.45

Medium 0.915 0.821 0.884 0.446
Noise 0.939 0.821 0.868 0.472
Clahe 1 0.837 0.905 0.48

Mosaic 0.933 0.821 0.891 0.49
Mixup 0.894 0.795 0.861 0.434

Cutmix 0.921 0.795 0.886 0.476

training performance of YOLOv11-mini with different combinations of these data augmentation
methods, aiming to determine the optimal augmentation strategy. The experimental results are
shown in Table 3.

Table 3
Ablation experimental results

Data augmentation methods Precision Recall mAP50 mAP50-95 fps(ms)

Clahe + Mosaic 0.91 0.795 0.869 0.491 0.6
Clahe + Mosaic + Cutmix 0.865 0.819 0.848 0.463 5.2

Clahe + Mosaic + Cutmix0.8 0.858 0.777 0.885 0.495 5.3
Medium + Mosaic 0.878 0.795 0.882 0.507 4.3
Medium + Cutmix 0.88 0.795 0.873 0.476 4.7

Medium + Mosaic + Cutmix 0.963 0.821 0.907 0.493 5.7
Medium + Mosaic + Cutmix0.8 0.906 0.795 0.881 0.478 5.7

The ablation experiments on various data augmentation methods and their combinations
indicate that the combination of medium color augmentation, mosaic, and cutmix (1.0) achieves
outstanding performance across all metrics. Specifically, it achieves a precision of 0.963, recall
of 0.821, mAP50 of 0.907, and mAP50-95 of 0.493, significantly surpassing the baseline model
(mAP50 = 0.876). Moreover, the combination of medium and mosaic yields the highest mAP50-
95 (0.507), demonstrating more stable detection performance across different IoU thresholds.
Overall, integrating medium, mosaic, and cutmix augmentation strategies effectively improves
the detection accuracy and generalization ability of the YOLOv11-mini model for nano-sized
UAV target detection. Future research can further optimize this augmentation strategy to fully
exploit the model’s potential.

5.3. Visualization of detection resultss

After adopting the combined data augmentation strategy of medium, mosaic, and cutmix (1.0),
the YOLOv11-mini model proposed in this paper demonstrates excellent detection performance
on the self-constructed nano-sized low-altitude drone dataset.
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As illustrated in Figure 6, the model accurately locates drone targets across various low-
altitude scenarios. Figure 7 presents the Precision–Recall curve on the test set, with an mAP0.5 of
0.906, indicating that the lightweight YOLOv11-mini still achieves high detection accuracy and
recall while significantly reducing the model’s complexity, making it suitable for deployment
on edge devices with limited computation resources.

Figure 6: Visualization results of the proposed method on the nano-size uva dataset

6. Conclusion

Aiming at the real-time monitoring needs of nano-sized civilian drones in low-altitude scenarios,
this paper proposes a lightweight improved YOLOv11-mini model based on YOLOv11, and
constructs a dedicated dataset to support subsequent training and testing. Based on the original
YOLOv11 architecture, GhostConv, C3Ghost, and a pruning strategy are introduced to reduce the
model size by approximately 87%, significantly lowering the computational burden and making it
more suitable for deployment on edge devices. Furthermore, a systematic comparison of multiple
data augmentation methods and their combinations shows that the augmentation strategy
combining Medium, Mosaic, and CutMix (1.0) effectively improves detection performance, with
mAP50 increasing to 0.907 and Precision reaching 0.963. It also performs well on mAP50-95,
thus verifying the effectiveness of the proposed approach. In summary, this study achieves
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Figure 7: Test results of YOLOv11-mini on the test dataset after using the optimal data augmentation
strategy

significant improvements in dataset construction, network lightweight optimization, and data
augmentation, enabling YOLOv11-mini to greatly reduce model parameters and computational
overhead while maintaining excellent detection accuracy and recall. This meets the requirements
of real-time, resource-constrained low-altitude drone monitoring. Future work focuses on
exploring more efficient attention mechanisms and small object detection strategies to further
enhance the model’s robustness and generalization in complex scenarios.
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