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Abstract
Oracle bone inscription (OBI) detection is hindered by tiny character size, complex morphological
variation, and severe interference from surface erosion, cracks, and background noise in ancient rubbings.
To overcome these challenges, we present an enhanced YOLO framework that marries multi-scale feature
fusion with efficient attention, enabling robust OBI character detection. Our core innovation is the
TriFusion Block (TFB), which synergistically combines three parallel branches: spatial attention for global
context modeling, global modeling for semantic feature extraction, and sequential processing for efficient
dependency capture. This design enables the network to simultaneously extract fine-grained local details
and long-range structural patterns with minimal computational overhead. Extensive experiments on the
Oracle-Bone Inscriptions Multimodal Dataset show that the proposed method improves the baseline
YOLOv8n by 2.33 % in recall, 8.03 % in precision, and 3.96 % in mAP@0.5, achieving final scores of 81.40
% recall, 91.30 % precision, and 86.35 % mAP@0.5.
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1. Introduction

Oracle bone inscriptions (OBI) are the oldest attested form of Chinese writing, carved more
than three millennia ago, mainly in turtle plastrons and animal scapulae, during the late Shang
dynasty[1]. As rare physical artefacts, OBI embody a wealth of historical information and
cultural significance. Their distinctive orthography and textual content offer first-hand evidence
for tracing the evolution of Chinese characters and for exploring early Chinese social structures,
religious practices, and historical events. Consequently, the accurate detection of OBIs is not
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merely a technical challenge in palaeography and archaeology, but a foundational task for
data-driven reconstructions of Shang-era civilisation.

In recent years, computer vision and deep-learning techniques have advanced rapidly.
Convolutional-neural-network (CNN)[2] object-detectors—especially the YOLO (You Only
Look Once) series—have achieved notable success in image detection[3, 4]. Integrating these
deep-learning detectors into OBI research can substantially improve detection accuracy and
efficiency while reducing manual labour, thereby accelerating the large-scale digitisation of
oracle-bone materials. These advances will support high-quality digital repositories, facilitate
scholarly decipherment, and lay a foundation for cross-disciplinary data mining and intelligent
analysis, giving the endeavour substantial theoretical and practical value.

Nevertheless, OBI detection still faces substantial challenges. Most available images are
rubbings or fragmented pieces whose quality varies widely and often suffers from blur, surface
damage, and geometric distortion. Each character is a minute target easily occluded by cracks,
abrasion, and background noise; even lightweight detectors still produce numerous misses and
false positives on high-resolution inputs. Recent advances in efficient attention mechanisms[5,
6] and state-space modeling[7] have demonstrated promising capabilities for handling such
complex scenarios with reduced computational overhead, yet their application to oracle bone
character detection remains underexplored.

This study tackles the detection of minute, heavily eroded oracle-bone characters by intro-
ducing a multi-scale enhancement module that fuses global attention, content clustering, and
state-space modeling. The module is inserted into both the YOLOv8n backbone and the SPPF
block, enabling the network to capture global, local, and sequential cues with minimal compu-
tational overhead. A systematic study of insertion stages and fusion weights shows that the
resulting model yields substantial accuracy gains in OBI detection, confirming the practicality
and portability of this plug-and-play, module-level paradigm for low-resource ancient-script
tasks.

Overall, our main contributions can be summarized below:

• Within YOLOv8n, we introduce a TriFusion Block (TFB) that fuses global attention,
content clustering, and state-space cues in a single residual unit, enabling efficient feature
mixing with minimal overhead.

• Building on TFB, we design TriFusion-SPPF (TF-SPPF)—an enhanced
spatial-pyramid-pooling module that enlarges the receptive field via hierarchical
pooling and fuses multi-scale features with Transformer attention, enabling the
network’s upper layers to unify local detail and global context.

The remainder of this article is organized as follows. In Section 2, we review related work on
Oracle bone inscriptions detection. Section 3 elaborates our proposed TriFusion-YOLO frame-
work, elaborating on the TFB and TF-SPPF as well as their attention formulations and training
losses. Section 4 presents experimental settings, evaluation metrics, and both quantitative and
qualitative analyses.Finally, Section 5 concludes the paper and discusses future directions.
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2. Related Work

Oracle bone inscription detection has become a key research topic in computational archaeol-
ogy and computer vision alike. Early studies relied chiefly on conventional computer-vision
techniques—template matching, morphological processing, and graph-based reconstruction[8].
However, these methods showed limited stability and accuracy when confronted with the
complex textures and damage patterns of oracle-bone rubbings.

Driven by advances in deep learning, researchers have increasingly adopted neural-network
approaches for OBI detection. Zhen et al.[9] proposed an improved YOLOv8 framework that
integrates a small-object head, revised loss functions, and attention modules to boost detection
performance. Xu et al.[10] developed an intelligent detection model that couples Otsu thresh-
olding with a modified YOLOv8 and employs a slim neck to improve small-object detection.
The YOLO family has proved highly effective for OBI-detection tasks. Li et al.[11] proposed a
lightweight oracle-character detector built on an improved YOLOv7-tiny architecture; it inte-
grates partial convolution and an asymptotic feature-pyramid network, reducing computation
while preserving accuracy. Li and Du[12] built a complete pipeline that employs YOLOv8 for
character detection and ResNet-18 for classification.

Beyond single-model approaches, researchers have explored multi-stage recognition frame-
works to address detection limitations. Fujikawa[13] proposed a two-model system combining
YOLOv3-tiny for initial character detection and MobileNet for secondary recognition of missed
characters, achieving 98.89% validation accuracy with significant computational efficiency.
Similarly, Meng et al.[14] developed a two-stage recognition method that first extracts skeletal
features using the Hough transform and then applies template matching with checkpoint hit
rates, demonstrating nearly 90% recognition accuracy even under character inclination and
damage conditions.

2.1. Multi-scale Feature Fusion and Attention Mechanisms in OBI Detection

Multi-scale feature fusion and attention mechanisms have been widely studied to improve
OBI-detection accuracy. Liu et al.[15] proposed an oracle-character detection system built on
an improved YOLOv7 that adds CoordConv layers and replaces classical NMS with matrix NMS,
boosting both accuracy and inference speed. Tang et al.[16] built an intelligent system that
employs YOLOv5 for character segmentation and ResNet-50 for classification, achieving robust
results through extensive image pre-processing and transfer-learning strategies. Addressing
the challenge of insufficient and imbalanced oracle bone datasets, Yue et al.[17] introduced
Dynamic Data Augmentation (DDA) strategies that adaptively adjust augmentation policies
based on real-time model performance during training. Their approach achieved 8.1% accuracy
improvement over baseline Inception networks on the OBC306 dataset, demonstrating the
importance of adaptive training strategies for handling incomplete character structures and
damaged rubbings typical in oracle bone materials.
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Figure 1: The figure depicts the improved YOLOv8n architecture: two TriFusion Blocks (TFB) and one
TriFusion-SPPF (TF-SPPF) module are inserted into the backbone to strengthen multi-scale, multimodal
feature representation. The neck and head retain the original YOLOv8n design, preserving its efficiency
in object detection.

3. Methodology

In this study, we propose a YOLO architecture enhanced by modular multimodal feature fusion.
The core innovation is the TriFusion Block (TFB), which integrates spatial attention, global
modeling, and sequence-processing branches in parallel to capture local details, global structure,
and spatial dependencies. We further design TriFusion-SPPF (TF-SPPF), which augments
conventional spatial-pyramid pooling with TFB-based enhancement to strengthen multi-scale
feature representation. The modules plug seamlessly into YOLOv8n, maintaining its efficiency
while markedly improving detection accuracy, and offer strong scalability and transferability.The
overall architecture of our improved YOLOv8n detector is illustrated in Fig. 2.

3.1. YOLOv8n

YOLO, first proposed by researchers at the University of Washington in 2015, is an efficient
object-detection framework noted for its balance of speed and accuracy[18, 19]. Released by
Ultralytics in 2023[20], YOLOv8 advances the series with several architectural innovations that
noticeably improve feature extraction and detection performance.

In this study, we adopt YOLOv8n as the baseline owing to its lightweight design, which offers
fast inference while maintaining strong detection accuracy. YOLOv8n follows a three-stage
design: the backbone extracts multi-scale features, the neck fuses them, and the head performs
localisation and classification. Relative to earlier versions, YOLOv8 introduces an anchor-free
mechanism and a decoupled head, which respectively improve localisation flexibility and task-
specific performance. In addition, YOLOv8 incorporates Task-Aligned Assigner for sample
allocation and Distributive Focal Loss (DFL) for bounding-box regression, providing a robust
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foundation for oracle-bone character detection.

3.2. TriFusion Block

We propose the TFB, which integrates three parallel branches—a spatial-attention branch
for global spatial modeling, a global-modeling branch for semantic-context extraction, and a
sequential-processing branch for efficient dependency modeling. By combining these comple-
mentary pathways, TFB simultaneously captures fine-grained local features and global structural
patterns, substantially improving the feature representation for oracle-bone character detection.

3.2.1. Spatial Attention Branch

To explicitly model long-range pixel dependencies in space, we embed a lightweight multi-head
self-attention (MHSA) branch into the TriFusion Block. Traditional convolutional operations
are constrained by local receptive fields, whereas this spatial attention mechanism enables
direct interactions between any two spatial positions—an ability that is crucial for detecting
sparsely distributed oracle-bone characters amid complex morphological variations and surface
erosion. The branch first flattens the 2-D feature map 𝑋 ∈ R𝐵×𝐶×𝐻×𝑊 into a sequence of
length 𝑁 = 𝐻 ×𝑊 , and then applies scaled dot-product attention with 32 heads to compute
pairwise interactions. The attention-weighted features are finally reshaped back to their original
spatial size, yielding context-rich representations for subsequent fusion stages.

X ∈ R𝐵×𝐶×𝐻×𝑊 flatten−−−→ Xflat ∈ R𝐵×𝑁×𝐶 (1)

Attention = Softmax
(︂
QℎK

⊤
ℎ√

𝑑

)︂
(2)

Here, 𝑁 = 𝐻 ×𝑊 denotes the flattened sequence length, and 𝑑𝑘 = 𝐶/32 represents the
dimensionality per attention head. The flatten operation transforms 2D spatial features into
1D sequences, enabling direct interactions between any two spatial positions. The scaled dot-
product attention establishes long-range spatial dependencies, which are crucial for detecting
sparsely distributed oracle-bone characters amid complex morphological variations and surface
erosion.

3.2.2. Global Modeling Branch

To capture semantic context and long-range dependencies of oracle-bone characters, we em-
ploy a standard Transformer encoder in the global-modeling branch. Unlike pure attention
mechanisms, this approach combines global contextual encoding with non-linear feature trans-
formation, which is essential for understanding semantically sparse and visually ambiguous
oracle-bone characters. The method utilizes a double-residual Transformer block design: Stage
1 applies multi-head self-attention for dependency modeling, and Stage 2 employs LayerNorm
and MLP for semantic enhancement. The input feature map [B, C, H, W] is first reshaped to [B,
HW, C] for sequence modeling, followed by residual connections and a final 1×1 convolution
for feature refinement.

154



𝑌1 = 𝑋flat + MHSA(LayerNorm(𝑋flat)) (3)

𝑌2 = 𝑌1 + MLP(LayerNorm(𝑌1)) (4)

Here, MHSA denotes multi-head self-attention with 16 heads, and MLP represents a feed-
forward network with 3× channel expansion and GELU activation. The double-residual design
ensures stable gradient flow during training while effectively capturing semantic features and
long-range contextual information essential for oracle-bone character understanding.

3.2.3. Sequential Processing Block

To efficiently model long-range dependencies in oracle-bone character sequences with lower
computational cost, we employ a simplified state-space model (SSM) in the sequential-processing
branch. Unlike traditional attention mechanisms with O(N²) complexity, the SSM operates in
O(N) linear time, making it especially suitable for high-resolution oracle-bone rubbing images
with dense character distributions. This approach is vital for detecting visually ambiguous
and semantically sparse oracle-bone characters, where sequential relationships provide crucial
contextual cues. The method consists of two stages: Stage 1 applies SSM with LayerNorm for
efficient dependency modelling; Stage 2 applies a feed-forward network (FFN) with LayerNorm
for semantic enhancement. The input is reshaped from [B, C, H, W] to [B, HW, C] for sequence
processing, followed by residual connections and a final 1 × 1 convolution for feature refinement.

𝑌1 = 𝑋flat + SSM(LayerNorm(𝑋flat)) (5)

𝑌2 = 𝑌1 + FFN(LayerNorm(𝑌1)) (6)

Here, SSM denotes a simplified state-space model with Linear-GELU-Linear structure, and
FFN represents a feed-forward network with 2× channel expansion. Unlike traditional attention
mechanisms with O(N²) complexity, the SSM operates in O(N) linear time, making it particu-
larly efficient for processing high-resolution oracle-bone rubbing images with dense character
distributions.

3.2.4. Adaptive Multimodal Feature Fusion

To integrate the complementary information from the three parallel branches, we propose
an adaptive multimodal fusion module. The input feature map 𝑥 is fed concurrently to the
spatial-attention, global-modeling, and sequential branches, producing three feature tensors.
Learnable scalar weights adaptively aggregate these tensors, which are then concatenated
along the channel dimension. A lightweight Conv–BatchNorm–GELU block further blends
the concatenated features, after which a channel-attention unit—global average pooling, two
1 × 1 convolutions, and a sigmoid—re-calibrates the activations. Finally, a residual shortcut
adds the fused features to the original input, delivering adaptive integration with negligible
computational overhead.
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Figure 2: The figure illustrates the proposed TFB architecture, which integrates three parallel
branches—spatial attention, global modeling, and sequential processing—to fuse multimodal features
for improved oracle-bone character detection.

3.3. TF-SPPF Enhancement Design

To boost feature representation without sacrificing the original multi-scale capability, we design
the TriFusion-SPPF (TF-SPPF) module as a non-intrusive wrapper around the standard SPPF.
TF-SPPF preserves the cascaded triple 5 × 5 max-pooling stages and the multi-scale fusion
of the original SPPF. After SPPF, the output features flow into the Combined-Enhancement
module for multimodal refinement, which adaptively fuses three parallel branches—spatial
attention, global modeling, and sequential processing—to enrich semantic representation. An
adjustment layer of 1 × 1 convolution, BatchNorm, and SiLU activation further refines the
fused features. To improve feature quality, a channel re-calibration block applies global average
pooling, an eight-fold channel reduction, SiLU activation, expansion, and Sigmoid gating to
produce channel-attention weights. Finally, a conditional residual shortcut is used when the
input and output shapes match; otherwise, the recalibrated features are forwarded directly.
This design retains the efficient multi-scale modeling of SPPF while markedly boosting feature
discriminability through combined attention and re-calibration mechanisms.

4. Experiment

In this section, we conduct comprehensive experiments to evaluate the effectiveness of our
proposed TriFusion-YOLO framework for oracle bone character detection. To demonstrate the
superiority of our method, we perform extensive evaluations on the Oracle-Bone Inscriptions
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Multimodal Dataset, comparing our approach against state-of-the-art object detection mod-
els including the baseline YOLOv8n and the latest YOLOv11n. Our experimental evaluation
encompasses both quantitative and qualitative analyses, examining detection accuracy, compu-
tational efficiency, and visual performance across diverse oracle bone rubbing scenarios. We
systematically investigate the contribution of each component through detailed ablation studies,
analyzing the individual and combined effects of the spatial attention branch, global modeling
branch, and sequential processing branch within the TriFusion Block. Additionally, we provide
thorough implementation details, evaluation metrics, and performance comparisons to ensure
reproducibility and fair assessment of our proposed method.

4.1. Dataset

We use the rubbing subset of the Oracle-Bone Inscriptions Multimodal Dataset (OBIMD)[21],
which comprises 10,077 high-quality rubbing images sampled from five historical phases of
Yinxu. Each image is professionally annotated by domain experts with bounding boxes and
category labels for every character, fully reflecting real-world challenges in oracle-bone detec-
tion—character diversity, scale variation, and complex backgrounds. The annotation workflow
combines AI-assisted pre-labelling with expert verification to ensure high data quality and
accuracy. Overall, the dataset captures the diversity and complexity of real-world oracle-bone
detection scenarios.

4.2. Implementation details

All experiments were run on a workstation equipped with an NVIDIA GeForce RTX 4070
GPU (12 GB). The experiments used PyTorch 2.6.0 with CUDA 11.8. The proposed method
was implemented with Ultralytics 8.3.114, an official framework for YOLOv8n. OpenCV 4.11.0
handled image pre-processing.

Models were trained for 200 epochs with a batch size of 32. Input images were resized to
640 × 640. Optimisation used AdamW (initial LR = 0.001; final LR = 0.01; momentum = 0.937;
weight decay = 1× 10−4). The learning-rate schedule followed a warm-up cosine-annealing
pattern: LR increases during the first five epochs and then decays following a cosine curve.
Early stopping (patience = 50 epochs) prevented over-fitting. Mixed-precision training (AMP)
was enabled to improve efficiency and memory usage, and data-loading workers were set to 8.

4.3. Evaluation Metrics

The model’s performance was evaluated using three critical metrics: Precision, Recall, and
mAP50. These metrics provided key insights into the model’s detection accuracy, recall ca-
pability, and overall performance on the validation set. Precision assessed the proportion of
correct predictions among all positive predictions, Recall measured the ability to detect all
relevant characters, and mAP0.5 offered a comprehensive measure of detection effectiveness.
The metrics are defined as follows:

Precision =
TruePositives

TruePositives + FalsePositives
(7)
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YOLOv8n Ours

Figure 3: Qualitative comparison of oracle-bone character detection results. Our TriFusion-YOLO
method demonstrates improved detection accuracy with reduced false positives compared to the
YOLOv8n baseline.

Recall = TruePositives

TruePositives + FalseNegatives
(8)

mAP0.5 =
1

𝐶

𝐶∑︁
𝑐=1

AP𝑐 |IoU=0.5 (9)

For each class, Average Precision (AP) is defined as the area under the precision–recall
curve, where precision is plotted against recall from 0 to 1. The mean Average Precision at an
IoU threshold of 0.5 (mAP0.5) equals the average AP over all categories in the dataset. This
metric jointly evaluates precision and recall, capturing the model’s ability to detect and classify
oracle-bone characters while limiting false positives; it is therefore well suited to complex
archaeological document-analysis tasks.

4.4. Performance Comparison

To assess the effectiveness of the proposed TriFusion-YOLO model, we systematically com-
pare its performance with the baseline YOLOv8n and the latest YOLOv11n on an oracle-bone
character dataset. All models are trained under identical settings—including dataset splits,
hyper-parameters, and evaluation metrics—to ensure a fair comparison. Performance is evalu-
ated using Precision, Recall, and mAP@0.5, with special attention to detection accuracy and the
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reduction of false positives in complex archaeological documents.

Table 1
Performance comparison of different models on the oracle bone character detection dataset.

Model Recall (%) Precision (%) mAP@0.5 (%)

YOLOv8n (baseline) 79.07 83.27 82.39
YOLOv11n 79.33 87.64 83.93
Ours 81.40 91.30 86.35

Table 1 compares the performance of different models on the oracle-bone character detection
dataset. The baseline YOLOv8n achieves a recall of 79.07%, precision of 83.27%, and mAP@0.5
of 82.39%. YOLOv11n shows slight improvements, with a recall of 79.33%, precision of 87.64%,
and mAP@0.5 of 83.93%. In contrast, the TriFusion-YOLO model significantly outperforms both
baseline methods, attaining a recall of 81.40%, precision of 91.30%, and mAP@0.5 of 86.35%.
Notably, our method demonstrates substantial gains over YOLOv8n, with recall improved by
2.33%, precision enhanced by 8.03%, and mAP@0.5 increased by 3.96%. These results confirm the
effectiveness of the TriFusion Block and TF-SPPF modules in oracle-bone character detection,
especially in reducing false positives while maintaining high detection accuracy.

Table 2
Ablation study of different modules on oracle-bone detection.

Model Config SAB GMB SPB Recall (%) Precision (%) mAP@0.5 (%)

YOLOv8n (baseline) 79.07 83.27 82.39
+ SAB ✓ 80.62 85.95 83.29
+ GMB ✓ 77.52 88.50 83.01
+ SPB ✓ 79.07 84.30 81.68
+ SAB+GMB ✓ ✓ 79.84 87.29 83.57
+ SAB+GMB+SPB (Ours) ✓ ✓ ✓ 81.40 91.30 86.35

Table 2 reports an ablation study of the TriFusion Block integrated into the YOLOv8n baseline.
We systematically evaluate the contribution of each component—Spatial-Attention Branch
(SAB), Global-Modeling Branch (GMB), and Sequential-Processing Block (SPB)—by adding them
to the baseline one at a time. Introducing each branch individually yields consistent gains,
and combining branches further improves performance. The full model attains the best recall
(81.40%), precision (91.30%), and mAP0.5(86.35%), exceeding the YOLOv8n baseline by 3.96%.
Best results are highlighted in bold.

5. Conclusion

In this work, we propose proposes the TriFusion Block (TFB), a multi-branch fusion module that
integrates spatial attention, global modeling, and sequential processing to improve oracle-bone
character detection, especially in complex and severely degraded rubbing images.
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Integrated into the YOLOv8n backbone, our method leverages complementary capabilities
from each branch to enhance both localization and classification performance. Extensive
experiments on the Oracle-Bone Inscriptions Multimodal Dataset show that our approach
achieves a recall of 81.40%, precision of 91.30%, and mAP@0.5 of 86.35%, surpassing the baseline
model by 2.33, 8.03, and 3.96 percentage points, respectively. Ablation studies confirm that each
component of TFB contributes positively, validating the effectiveness and generalizability of
our multi-branch fusion strategy.
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