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Abstract
In recent years, smart agriculture utilizing technologies, such as robotics, sensing, internet-of-things
(IoT), and artificial intelligence (AI), has been promoted to address pressing challenges in agriculture,
including the aging and shrinking human farming population, as well as the effects of global warming
on crop production. As part of these initiatives, we are developing and implementing a method of
weed species identification using drones equipped with multispectral cameras, as well as machine-
learning, with the aim of reducing both time and labor. Weed species identification plays a crucial role in
enabling environmentally-sustainable weed management by facilitating species-specific countermeasures.
This is particularly important given the increasing impact of climate change, which has accelerated
and prolonged weed growth and promoted the spread and establishment of invasive species, thereby
adversely affecting crop yields.
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1. Introduction

In recent years, smart agriculture has been promoted through the use of robotics, sensing
technologies, internet-of-things (IoT), artificial intelligence (AI), and other innovations to achieve
labor-saving, high-yield, and high-quality crop production [1]. Various technologies are being
developed to address the pressing challenges facing Japanese agriculture, including the declining
and aging human farming population and the impact of global warming on crops. As part of
these efforts, we are developing a method for rapid and low-effort weed species identification
using unmanned aerial vehicles (UAVs) equipped with multispectral cameras and machine-
learning, a core technology of artificial intelligence. Weed species identification plays a key role
in implementing targeted measures as part of Integrated Pest Management (IPM), a strategy
that combines chemical, cultural, and physical control methods to minimize environmental
impact while maintaining weed populations below economically-damaging thresholds [2]. This
is especially important in light of the earlier and prolonged growth of weeds and the increasing
spread and establishment of invasive species due to climate change, both of which pose serious
threats to crop productivity. Weeds compete with crops for essential resources, leading to
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reduced yields. Therefore, effective weed management practices are essential to maintaining
crop productivity and promoting sustainable agriculture. Monitoring the use of UAVs has
proven effective for the early detection of invasive weeds and for large-scale environmental
observations [3]. In particular, combining UAVs with object-oriented image analysis enables
high-accuracy and efficient vegetation mapping in semi-natural grasslands [4]. In the current
study, we measured the spectral reflectance characteristics of weeds using UAVs and classified
the species using machine-learning [5]. For quick and easy weed species identification, weed
species were classified using a Random Forest model trained on the clustering results [6, 7, 8, 9].
These indices are expected to enable faster and more accurate discrimination than conventional
methods. The remainder of this paper is organized as follows. Section 2 describes the vineyard
plots, observation methods, and the classification approach using existing technologies. Section
3 presents the conclusion and discusses future work.

2. Development of methodologies for weed species identification

2.1. Research plots

The study was conducted in three vineyard plots located in Takizawa City, Iwate Prefecture,
Japan. Plots 1 and 2 were situated on sloped terrain, whereas Plot 3 was located on flat land
(Figure 1). Plot 1 was expected to yield its first harvest in 2024. Plot 2 was a newly-developed
site that had not yet been planted and was a vacant field, whereas currently contained young
grapevines under cultivation. The grape varieties cultivated in these plots were Cabernet
Franc [10], Sauvignon Blanc [11], and Trousseau [12, 13]. Various weed species had been
identified in the study areas, including clover, horsetail, dock, and kudzu. These weeds require
similar resources to grapevines, such as sunlight, soil moisture, and nutrients, and therefore
compete with the vines for these limited inputs. Without appropriate weed management, such
competition can inhibit grapevine growth and potentially facilitate the spread of pests and
diseases. For instance, clover (Figure 2) absorbs nitrogen from the soil; horsetail and dock
(Figure 3) serve as potential hosts for insect pests, such as the Japanese beetle and the false
Japanese beetle; and kudzu (Figure 4) develops extensive underground root systems, making
soil preparation extremely challenging. However, clover is also known to have beneficial effects.
It is generally recognized that reducing soil moisture content and nitrogen availability can
enhance the sugar concentration (Brix) of grapes [14]. Clover is sometimes intentionally used in
vineyards as a soil moisture regulator as green manure due to its ability to fix nitrogen in root
nodules and as a soil erosion control measure, due to its strong and widespread root system.

2.2. Weed species classification using non-hierarchical clustering

This approach combines existing technologies to propose a method for simple and rapid classi-
fication. The drone used in this study was the DJI Mavic 3M (DJI, Shenzhen, China) (Figure 5)
[15]. Aerial imagery was acquired on three occasions in 2024: July 2, July 23, and September 22.
The flight altitude was maintained at approximately 50 m for all sessions; image acquisition
was avoided during rainy conditions. After generating orthomosaic images, the target areas
were trimmed using GIS software (QGIS) [16]. A mesh size of 1 m² was applied, and the spectral
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Figure 1: Aerial photo of the surveyed vineyard plots in Takizawa City, Iwate Prefecture, Japan

Figure 2: Clover (2024/7/2) Figure 3: Kudzu (2024/7/2)

Figure 4: Horsetail/Dock (2024/7/2)
Figure 5: The unmanned aerial vehicle used in
the trial (DJI Mavic 3M)
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characteristics of weeds within each mesh unit were analyzed based on the reflectance values
in each wavelength band. Plant reflectance was characterized by pronounced differences in
the red (R), red-edge (RE), and near-infrared (NIR) bands (Figure 6). Healthy leaves exhibited
low reflectance in the red and green bands and high reflectance in the NIR band, whereas
withered leaves showed increased reflectance in the red and green bands and reduced NIR
reflectance (Figure 6). Soil demonstrated uniformly low reflectance across all bands [17]. Based
on the clustering results of the three sets of aerial imagery and corresponding field surveys
(Figure 7), characteristic spectral features were identified for kudzu, clover, and dock/horsetail.
Weed species were actually observed and surveyed in the fields to identify which weed species
were growing in each mesh unit. Kudzu, which is vigorous and enters its flowering phase in
summer, produces large leaves. As a result, during summer, its NIR reflectance reached values
approximately ten times higher than its red reflectance; green reflectance was higher than that
of clover and dock/horsetail. Clover exhibited NIR reflectance approximately five times greater
than red, but with lower green reflectance than measured in kudzu. Horsetail/dock had an NIR
reflectance approximately three times higher than red, and its green reflectance was comparable
to that of clover.

Figure 6: Differences in spectral reflectance
depending on leaf health

Figure 7: Average reflectance of each wavelength
band for each cluster is the average of the data
taken from three aerial photos data on different
days

The near-infrared (NIR) band exhibited the highest feature importance when classifying all
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weed species using a Random Forest classifier trained on the clustering results from July 2 as
training data (Figures 8, 9). The red edge (RE) band also showed high importance, particularly
for horsetail/dock. In contrast, the green (G) and red (R) bands demonstrated relatively low
importance, with only minor variation across species and limited overall contribution. This
ranking of feature importance was consistent across multiple evaluation metrics, including
feature importance, permutation importance, and Shapley additive explanations (SHAP) values,
with NIR consistently ranked highest, followed by RE, then G and R. These results confirm that
NIR and RE are the most effective spectral bands for weed species classification. A breakdown
of SHAP values by species indicated that for clover, although the overall contribution of features
was relatively modest, NIR remained the most influential. In the case of kudzu, both NIR and RE
values were important, indicating their substantial role in its identification. For dock/horsetail,
SHAP values for NIR and RE were even higher, suggesting stronger discriminative power. These
differences are attributed to the distinct spectral reflectance characteristics of each species.
NIR and RE wavelengths are particularly sensitive to factors such as plant moisture content,
physiological health, and structural traits, making them effective for capturing interspecies
variation. Conversely, the G and R bands had relatively limited impact and may even negatively
affect classification accuracy for certain weed types. The trained classifier was then evaluated
using aerial imagery captured on July 23 and September 22 as test data. Figure 10 shows the
actual weed species distribution data for July 23, whereas Figure 11 presents the classification
results generated by the Random Forest model. The model achieved an accuracy of 90.9%,
indicating strong performance. Figures 12 and 13 show the actual weed species distribution
data and classification results, respectively, for the September 22 data, with an accuracy of
82.8%. These findings demonstrate that a generalizable classifier can be effectively trained using
clustering-based labeling as training data.

Figure 8: Decision tree for all wavelength bands.
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Figure 9: Analysis using feature, permutation, and SHAP importance

3. Conclusion

This paper presents the development of a rapid and low-effort method for weed species identifica-
tion using a drone equipped with a multispectral camera in combination with machine-learning.
This approach combines existing technologies to propose a method for simple and rapid classi-
fication. Accurate identification of weed species enables the implementation of species-specific
management strategies, thereby contributing to reduced environmental impact. The evaluation
experiments demonstrated that the proposed method permitted effective and straightforward
diagnosis. The weed species observed in this study exhibited distinct spectral reflectance char-
acteristics, suggesting that these features can be utilized for their identification in other fields.
Future work includes expanding the range of measurable spectral bands to achieve more detailed
diagnostics, as well as conducting further validation across a greater number of vineyard plots
to evaluate the generalizability and practical utility of the approach. Integrated pest and weed
management (IPM) is increasingly promoted as a means of reducing environmental burden,
and the method developed in this study is intended to contribute to such initiatives through
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Figure 10: Actual weed species distribution data
(aerial photo taken on 7/23/2024)

Figure 11: Classification results generated using
the Ran-dom Forest model (aerial photo taken on
7/23/2024)

Figure 12: Actual weed species distribution data
(aeri-al photo taken on 9/22/2024)

Figure 13: Classification results generated by the
Random Forest model (aerial photo tak-en on
9/22/2024)

practical deployment.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.
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