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Abstract

In recent years, the effects of climate change have become more pronounced, and extreme weather
events have significantly affected the agricultural sector. In this study, we aimed to analyze the impact
of record-high temperatures between June to August of 2023 and 2024 on the yield of greenhouse
tomato cultivation in Iwate Prefecture, Japan. Random Forest regression model was used to analyze
the yield prior to the occurrence of exceptional fluctuations and to forecast such fluctuations based on
the deviations from actual yields. The results revealed that the method was effective in forecasting the
signs of yield fluctuation. In the future, this method can be applied to risk prediction and pest control
measures in greenhouse environments.
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1. Introduction

Between 2023 and 2024, both the frequency and severity of extreme weather events increased,
driven by the ongoing progression of global warming. In agriculture, production management
based on empirical rules (such as reliance on conventional weather patterns) is no longer
sufficient to cope with this situation, making it increasingly difficult to ensure stable yields
[1]. Even under seemingly controlled environments, such as greenhouses, changes in external
temperature and solar radiation affect the internal climate, which result in yield fluctuations [2].

In Japan, crop growth is increasingly affected by several factors, such as heat stress during
summer, insufficient sunlight caused by prolonged rainfall during the rainy season, and the
emergence of new pests and diseases. Exceptional fluctuations in yield and quality have been
reported, even in greenhouse tomato cultivation, where environmental conditions are typically
controlled [3, 4]. In recent years, yield prediction models that are developed using environmental
and yield data collected before the frequent occurrence of extreme weather events have become
less accurate. During the summer of 2024, prolonged heatwaves made it difficult to control the
internal temperature of greenhouses, leading to serious quality issues, such as poor fruit set and
decreased sugar content. Furthermore, in recent years, complex and unprecedented factors have
caused abnormal plant development and unanticipated reductions in yield; these factors include
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the simultaneous outbreak of new pests (e.g., tobacco whitefly) and diseases (e.g., powdery
mildew and late blight) that have adapted to warming climates [5, 6]. These fluctuations not
only destabilize the income of producers but also pose significant challenges in securing a
stable food supply at the regional and national levels. Existing studies have analyzed yield
fluctuations using statistical analyses such as multiple regression and machine learning models
such as regression [7, 8, 9]. However, few studies have been conducted to predict abnormal
yield fluctuations caused by global warming.

In this study, we aimed to investigate the nature of exceptional yield fluctuations and develop
a prediction method. Using environmental and yield data collected from IoT sensors at the
Iwate Wakae Farm, Inc [10] (Morioka City, Iwate Prefecture, Japan), we aimed to develop a
yield prediction model based on conditions observed before the frequent occurrence of extreme
weather events. We then quantitatively aimed to evaluate the discrepancies between the
predicted and actual yields and identify early signs and timing of anomalies, with the goal
of developing a method to detect yield fluctuations in advance. Iwate Wakae Farm, Inc is a
large-scale facility equipped with a Venlo-type greenhouse that employs a long-term multiphase
cultivation system. The greenhouse covered an area of 2,160 m? and a hydroponic system using
rockwool as the growing medium has been employed in the greenhouse. The facility is equipped
with several environmental sensors, including solar radiation, temperature, humidity, and COo,
allowing for high-precision monitoring of the cultivation environment. The comprehensive data
collection could significantly enhance the reliability of the analyses conducted in this study.

Figure 1: lwate Wakae Farm, Inc.

2. Yield prediction model before the frequent occurrence of
extreme weather events (Normal model)

2.1. Explanatory and Objective Variables

The primary explanatory variables used in this study were solar radiation and average daily tem-
perature. Over the past four weeks, solar radiation had accumulated, which is closely associated
with photosynthetic activity and fruit enlargement. Previous studies have demonstrated that this
time span is highly correlated with the progression of growth stages from fruit set to maturation
(Figure 2) [7]. We aimed to capture the distribution of the daily average temperatures rather
than relying on simple mean values. Therefore, we introduced a histogram-based representation
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(hereafter referred to as the H function), which divided the daily average temperatures over
the past eight weeks into 1 °C bins and used the relative frequency of each bin as a feature
variable (Figure 3) [8]. Weekly cumulative yield for the following week was set as the objective
variable (Figure 4). Daily yields were estimated using a three-week moving average to account
for practical conditions, such as scheduled harvest breaks (e.g., once a week), which lead to
periodic gaps in yield records. This smoothing approach facilitated the extraction of underlying
yield trends. Previous studies have confirmed that the influence of harvest breaks is typically
confined to period spanning one week before and one week after the break [9].

Cumulative 7
period
(weeks)
0.65 0.66 0.67 0.66 0.63

Correlation  0.46 0.57 065 0.66
coefficient

Figure 2: Correlation between cumulative solar radiation and weekly yield.
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Figure 3: Example output of H function on Feb 25, 2023.

2.2. Model Building and Evaluation

The yield prediction model was constructed using a random forest regression algorithm, which
is well-suited for capturing nonlinear relationships and offers strong robustness against external
disturbances [11]. A normal model (model18—22) was trained on data obtained between Decem-
ber 2018 and August 2022, the period before the frequent occurrence of extreme weather events.
For comparison, a model with extended period (model18-23) was also developed using data up
to August 2023, including the potentially abnormal year 2023. The test datasets consisted of data
from the year following each training period: December 2022 to August 2023 for model18-22,
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Figure 4: Objective Variable (weekly cumulative yield).

and December 2023 to August 2024 for model18—23. Model performance was evaluated using
the coefficient of determination (R*) and root mean square error (RMSE).

R iz = 5)°
D (e @

1 n .
RMSE = \/n Zizl(yi — 9i)? (2)

Where n is the number of observations, y; is the i-th observed value, ¢; is the corresponding
predicted value, and ¥ is the mean of the observed values. Table 1 presents the training results of
the developed prediction models. Significant differences in the coefficient of determination and
RMSE were observed between model18-22 and model18-23. This indicates that in recent years,
when weather patterns have become increasingly non-stationary due to extreme events, accurate
yield prediction models must be constructed by selecting long-term training datasets that
comprehensively capture exceptional weather conditions and the resulting growth abnormalities
[12]. However, the accumulation of extensive datasets during transitional periods remains
challenging. Therefore, this study proposed a method for continuously monitoring deviations
from the predictions generated by a normal model. This approach could enable the early
detection of anomaly signs and associated risks [12].

Table 1
Model Performance Metrics

R? RMSE

mOdellg_Qg 0.86 247.2(Kg)
mode|18_23 0.14 479.3(Kg)
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3. Analysis of exceptional yield fluctuations

Figures 5 and 6 depict the trends in the observed and predicted yields for 2023 and 2024,
respectively. These results revealed that two periods (February—-April 2023 and April-July 2024)
were characterized by notably large yield. The yield between April-July 2024 was primarily
influenced by the outbreak of pests, such as the tobacco whitefly, as confirmed by reports
and observational records from farmers. In this section, we focus on analyzing the factors
contributing to the yield fluctuations between February and April 2023. Furthermore, we
predict and analyze seasonal outbreaks of pests that could cause exceptional yield fluctuations.
Interviews with growers revealed that the decline in yield observed around February 2023
(Figure 5) was primarily attributed to reduced solar radiation. To verify this, we compared the
accumulated solar radiation over the four months immediately preceding this period, particularly
from December to January, with that of other years (Figure 7). Notably, yield between 2019-2020
were excluded owing to missing data. The analysis showed that the accumulated solar radiation
from November to January in the 2022-2023 and 2023-2024 seasons was approximately 60—90
MJ/m? lower than the average from 2018 to 2022 (492.5 MJ/m?), indicating a clear downward
trend. Such a reduction in solar radiation likely had a significant impact on fruit set and
enlargement, resulting in a marked decrease in yield. These findings suggest that continuous
monitoring of deviations in solar radiation from typical levels can provide valuable insights for
predicting yield fluctuations at least one to two months in advance.
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Figure 5: 2023 Yield Fluctuation Analysis

Outbreaks of pest infestations have traditionally been limited to greenhouse whiteflies [13].
This pest is relatively cold-tolerant, easy to manage, and generally does not cause severe damage.
However, in recent years, a new pest species, the tobacco whitefly [14] has emerged; this species
is highly tolerant to high temperatures and the damage it causes has been rapidly increasing.
Tobacco whiteflies are difficult to control using conventional pest management strategies and
become particularly active in warmer environments, leading to significant effects on yield
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Figure 7: Changes in accumulated solar radiation from November to January in recent years

during hot periods. Additionally, disease damage caused by pathogens, such as sooty mold
and powdery mildew [15, 16], has also been reported. The simultaneous occurrence of pests
and diseases imposes substantial stress on plant growth, leading to significant yield reduction.
Whitefly infestations in the facility reached their first peaks on May 11, 2023, and April 13, 2024
for 2022-2023 and 2023-2024 periods, respectively (Figure 8). Using a multiple regression model
[17] combined with the effective accumulated temperature [18], we developed a prediction
model and determined that the period from egg to larval stage occurred around May 1, 2023,
for the former peak and around April 1, 2024, for the latter. They were used as the explanatory
variables: temperature, humidity, the number of pests in the previous week, Leaf Area Index,
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Figure 8: Number of whiteflies caught in the west greenhouse
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Figure 9: Difference between the predicted value obtained using the normal model and actual yield

and yield. The infestation in 2023 is primarily caused by the greenhouse whitefly, which is
effectively controlled by conventional pest management methods. In contrast, the 2024 outbreak
was mainly due to the tobacco whitefly, which resisted conventional control measures, leading
to continuous infestation spanning from the first peak to the second peak. Figure 9 shows a
graph of the differences between the predicted value obtained using the normal model and actual
yield in 2022-2023. The blue lines in Figure 9 represent the range of differences for the past five
years from 2018 to 2022 (maximum: +151.4 kg, minimum: -76.5 kg). In other words, results
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that exceed or fall below these blue lines indicate irregular yield fluctuations compared with
typical years. Because the prediction model forecasts one week in advance, it enables proactive
responses. Moreover, combining this early warning with predictions of the underlying causes
of the exceptional yield fluctuations described earlier, rapid and effective countermeasures have
become possible.

4. Summary

In this study, we developed a yield prediction model for facility-grown tomatoes and analyzed
yield fluctuations by examining the differences between the predicted and actual yields. We
also explored the potential to predict the early signs of such variability. The analysis revealed
that irregular yield fluctuations were mainly caused by insufficient solar radiation, pests, and
diseases. Future work will focus on developing a model that can forecast the likelihood of
exceptional yield fluctuations and estimate the extent of yield reduction in advance, thereby
enabling effective countermeasures at the production site.
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