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Abstract

This paper presents the derivation and effectiveness of the best-acceleration (BA) filter, which minimizes
the steady-state acceleration-error variance in an o — 3 —+y tracking filter based on a constant-acceleration
motion model. The purpose is to enhance the tracking performance for a target object. Currently, the
minimum-variance (MV) filter has already been proposed to minimize the steady-state position-error
variance. The performance of the proposed BA filter was evaluated by comparing it with the MV filter.
The results demonstrate the effectiveness of the BA filter, supporting the optimality of the BA filter in
minimizing the steady-state acceleration-error variance.
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1. Introduction

Monitoring systems for robots and intelligent vehicles that use remote sensors such as cameras,
LiDAR, depth sensors, and radar require accurate tracking of moving objects. For such appli-
cations, Kalman-filter-based trackers are commonly used to estimate position, velocity, and
acceleration [1-5]. In the Internet of Things (IoT) era, all sensors embedded in measurement
systems and their targets (e.g., cars, robots, and smart equipment) are connected, and their data
can be fused. As a result, such systems can acquire various motion parameters not convention-
ally used and can now be exploited for tracking and navigation applications. Although tracking
systems are generally applied to moving-object tracking, there are many other systems in IoT
applications, including state-of-charge estimation of Li-ion batteries [6], state estimation and
stability control in smart grids [7], microclimate forecasting that optimizes ventilation and irri-
gation in smart greenhouses [8], and vibration-based fault diagnosis for predictive maintenance
of rotating industrial machinery [9]. Thus, the design of tracking systems is essential for the
development of various IoT applications.

The signal processing methodology for a tracking system is known as a tracking filter. For
moving object tracking, tracking filters estimate the future state of parameters such as position,
velocity, acceleration, and other states of a target based on observed data from sensors such as
LiDAR and radar. A tracking filter also aims to smooth the estimation results to achieve higher
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prediction accuracy. Representative tracking filters include the Kalman, a-0, and a—- filters
[1]. Figure 1 shows the structure of a tracking filter.
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Figure 1: The structure of the tracking filter

This study focuses on the optimal design of the a—(3— filter, which is one of the simplest
tracking filters. The a—3—~ filter is a one-dimensional tracking filter that uses a constant-
acceleration motion model and is known as the steady-state Kalman filter [2, 3]. Because users
can freely configure the filter gains (v, 3, ), it requires significantly less computational effort
than the more widely used Kalman filter and its variants. For this reason, even when other
filters such as the Kalman filter are employed, it can be beneficial to use the a—3-~ filter to
predict performance in advance.

For the optimal gain design of the a—[—~ filter, the MV filter criterion has been proposed [4].
The MV filter criterion minimizes the steady-state variance of the predicted position errors and
is known to achieve smaller prediction errors than the well-used Kalman-filter criterion [5].
However, the MV filter criterion optimizes only the prediction of position; other parameters,
including acceleration, are not optimized. In certain applications in intelligent vehicles and
motion estimation using only position sensors, tracking filters aim to estimate and predict
acceleration (e.g., estimating sports performance using acceleration information obtained via
remote motion measurements [10]). However, the theoretical properties of a tracking filter that
optimizes acceleration prediction are unknown.

In this study, we theoretically analyze the performance of the -~ filter for the best accel-
eration prediction. The optimal gains that minimize the variance of the predicted acceleration
are derived in closed form. We term the proposed acceleration-optimized ov—3— filter the BA
filter. The performance of the conventional MV filter and the proposed BA filter, both with
optimal gains, is compared through theoretical analyses and numerical simulations.

2. a — 8 — v tracking filter

2.1. Definition and performance indices

The a—f— filter is defined based on a constant-acceleration motion model, with a sampling
interval denoted as T'. The filter gains are denoted by «, 3, and =, while the measured position
at time step k is denoted by x, ;.. The smoothed position, velocity, and acceleration are defined
as [1, 2].

Ts e = Tpk + UTok — Tpk) (1)
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B
Usk = Upk + = (Tok — Tpk) (2)

T
ask = a +l(:1c —Tpk) (3)
S7k - p’k T2 O}k ka
The predicted position, velocity, and acceleration are defined as [1, 2]
2
Tpk = Tsk—1 + Tvs,k:—l + jas,k—l (4)
Up,k = Us,k—1 + Tas,kfl (5)
apk = Qs k-1 (6)

By iterating these smoothing and prediction processes, the filter sequentially estimates and
predicts the target state.

One of the fundamental performance indices of the av—3— filter is trackability of the target
moving according to the filter’s motion model considering the measurement noises. Since
this performance is evaluated based on errors that are caused by random measurement noises,
it can be evaluated in terms of the variance of the prediction errors. The true values of the
target object’s position, velocity, and acceleration are denoted by xz, vy, and a;. We define the
steady-state errors as follows. Because the steady-state error does not depend on time because
of the steady-state assumption, the time index is omitted. The variance of the steady-state
position error is expressed as

ag = E[(zp — z)% (7)

Similarly, the variance of the steady-state acceleration error is expressed by

oo = E[(ap — a)’] (3)

a

By eliminating x,, vy, and a,, using equations (1)-(6), the variances 012) and o2 can be expressed

in terms of the filter gains «, £, 7y, and the measurement error variance A as

9 832 «
B age ) B ©)
2 _ 45’72 A
70 = g(a, B,7) TF i
where,
g(a, B,7) = 208(4 = 20— ) = (8 = 8a — 28+ aff + 20%) (an

= (206 = 7(2 - a))(4 — 2 = f)
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2.2. Conventional minimum-variance filter

The conventional MV filter assumes ~ is constant, and determines the gains a and § that
minimize 012,. By taking the partial derivatives of equation (9) with respect to o and 8 and
setting them to zero, we obtain the two following equations [4]

daf =~(8 —da - B) (12)
B3 +2(3a — 8)% +4(3% — 1200+ 16) 8 — 8a*(2 — ) = 0 (13)

From equations (12) and (13), the gains «, 5 and v are determined.

3. Derivation of proposed best acceleration filter

Whereas the conventional MV filter minimizes the position prediction error, this study derives
an a—(3—~ filter that minimizes the steady-state acceleration prediction error. In this paper, the
proposed filter is referred to as the BA filter.

Similar to the MV filter, we find the gains o and 3 that minimize o2 subject to v being
constant. We take partial derivatives of equation (10) with respect to & and 3, and find their
minimum points.

By taking the partial derivative with respect to o, we have

dog _ 487> 99(a.By) A (19)
o [g(a,B,7)? O T
Since %22‘ = 0 is assumed as a condition,
99(a.8,7) _ (15)
oo

is satisfied. By taking the partial derivative of equation (11) with respect to o, we get the
following equation:

0BT _ 54— 0~ B) (-8 + 6+ 4a) (16)

From equation (15) and (16), we get the following equation:

264 —4a—B) —y(-8++4a)=0 (17)

Next, we also calculate the partial derivative with respect to J as

do? 42 dg(a, B, A
% = o g 1 8 GE 19
Since %‘Tg = ( is assumed as a condition,
0
gla67) - 02152 g (19
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is satisfied. By taking the partial derivative of equation (11) with respect to 3,we can get the
following equation as

dg(a, B,7)

o5 = 8a — 4a® — 4af — y(a — 2) (20)
By substituting equation (20) into equation (19), the following equation is obtained:
99(a, 5,
gla5.7) — 621G 2 2P} =0 @)

By simplifying Equation (21), we obtain

af?—~(2—-a)*=0 (22)

2

From the above, we obtained equations (17) and (22). Using these equations, we express o,

in terms of . From equation (22), we obtain

af?
= — 23
7= oo (23)
By substituting equation(23) into equation (17), we obtain
0—25(4—4a—6)—a752(—8+ﬁ+4a) (24)
B 2-ay
Simplifying equation (24),we obtain
0=26(4—4a - B)(2—a)* —aB(—8+ B + 4a) 25)
= —af? —2(3a—2)(a—2)8 + 8(a — 2)*(a — 1)
By using the solution formula, 3 is expressed in terms of «, and we obtain
- —(Ba—2)(a—2) £ /(Ba —2)2(a — 2)2 — 8a(a — 2)%2(a — 1)
“ (26)
_ —(Ba—2)(a—2) £ (a—2)?
B o
From equation (26),
B=2(2-a«) (27)
or
(fa—-1)(2 -«
5_dla=1@2—q) o)

Assuming that equation (27) holds, v is
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v = 4da (29)

By substituting equation (27) and (29) into equation (11),

g(a, B,7) =0 (30)

Equation (30) implies that the denominator of o> becomes zero and is not appropriate as the
solution. Assuming that equation (28) holds, 7 is

. 16(aa— 1)2 (31)

Equation (31) implies

0=16(c® —2a+1) — ay (32)

By using the solution formula, « is expressed in terms of 7, and we obtain

(Y +32) £ /v(y +64)
a= 5 (33)

From equation (33), we can express « as

o 32— V(r+64) (34)
32

or

_ (v +32)+ V(v +64)
o= 3 (35)

By applying the arithmetic-geometric mean inequality,

14322 \AO T 6D 6)

Assuming that Equation (31) holds, and referring to Equation (36), we obtain

a<0 37)

Equation (37) indicates that Equation (31) is the inappropriate solution because the gain
becomes negative. Therefore, equation (35) is appropriate to determine «. Thus, 3 is expressed
in terms of y as

5= 4y + /(7 +64))(64 — v — /v(y + 64)) (38)
(Y + 32+ /7(7 + 64))2

By substituting equations (35) and (38) into Equation (10), we arrive at the minimum variance
of the acceleration prediction error as

2 1024{y + /(7 + 64) }7* LA (39)
O {(r =32 + V(641 =3y + (v + 64 T*
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The equations (35), (38), and (39) are the main results of this paper that clarify the gains of
the a—(—~ filter with best acceleration prediction. Furthermore, the steady-state minimum
variance of the prediction errors is expressed solely in terms of ~.

4. Evaluation

4.1. Numerical analysis results

We present numerical analyses to validate the derived results. For a model undergoing constant
acceleration motion, we evaluate and compare the MV filter and the BA filter in terms of 03
and 012, using equations against the fixed . We calculate these error variances by substituting
the optimal gains (MV filter: equations (12) and (13), BA filter: equations (35) and (38)). In the
analyses, A and T are normalized to 1.

Figures 2 and 3 show the numerical analysis results of o2 and 012) , respectively. Figure 2 shows
the numerical analysis results of 02, and Figure 3 shows the numerical analysis results of 012,.
Figure 2 shows that the BA filter performs better than the MV filter in minimizing o2. Figure
3 shows that, within the « range from 0 to 1, the MV filter performs better than the BA filter
in minimizing 072, . These results indicate the theoretical performance differences between the

two types of filters.
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Figure 2: Analysis results of o>
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Figure 3: Analysis results of o7

4.2. Numerical simulation results

This subsection presents a numerical simulation to validate the derived results and to show
the effectiveness under realistic sensing conditions with random noise and to corroborate the
analysis. A target moved with a constant acceleration of 1 m/s? and a sampling interval T" of
0.1 s and the observation period was 60 s. Observation noise was randomly applied within the
range 0.01 to 0.3. Figures 4 and 5 show the simulation results for absolute prediction errors
in acceleration and position, respectively. Figure 4 shows that the acceleration errors of the
BA filter become smaller than those of the MV filter. As the steady-state error reflects the
error in the limit as time approaches infinity, this indicates not only that the B A filter is more
suitable for minimizing o2 but also that the results are consistent with Figure 2. Similarly, Figure
5 shows that the position errors of the MV filter consistently become smaller than those of
the BA filter. This indicates not only that the MV filter is more suitable for minimizing o2,
but also matches the results with Figure 3. Thus, the numerical simulation results prove the
effectiveness of the proposed BA filter and its difference from the conventional M'V filter.

5. Conclusion

In this paper, we derived the BA a—§— tracking filter that minimizes the steady-state variance
of the predicted acceleration. The closed forms of the BA filter gains «, 8 and vy are given
in equations (35) and (38). In addition, we conducted a performance comparison with the
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Figure 4: Simulation results for acceleration prediction error
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Figure 5: Simulation results for position prediction error

conventional MV filter that is designed to minimize position prediction errors. As a result,
both numerical analysis and simulation demonstrate that the BA filter performs better than
the MV filter for acceleration prediction.
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