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Abstract
Oracle bone inscriptions (OBI), the earliest form of Chinese writing, are composed of complex characters
built from recurring radical components. Understanding how these components form full characters is
critical to studying the semantics and structure of early writing systems. In this paper, we propose a
radical-conditioned diffusion model that synthesizes plausible OBI characters given a set of radicals and
their counts. Our method encodes radical identity and positional context into structured embeddings,
which condition the generation process via cross-attention in a U-Net backbone. To better preserve
radical morphology and visual coherence, we introduce a perceptual loss that adapts dynamically during
denoising. Experiments show that our model not only generates visually consistent and structurally
valid characters, but also improves multi-label classification when used for data augmentation. These
results demonstrate the potential of component-level generation as a tool for character reconstruction
and structural analysis in ancient scripts.
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Oracle bone inscriptions (OBI), known as the earliest systematic writing in China dating
back to around 1600 BC, constitute a fundamental pillar for understanding ancient Chinese
civilization, language, and the evolution of writing [1]. Crucially, the ideographic characters
that form OBI are the direct progenitor of the modern Chinese character system. Within
this early writing system, a relatively unified radical structure had already evolved. These
recurring graphic elements serve as the building blocks of characters, are used for dictionary
organization, and provide clues to a character’s meaning and pronunciation [2]. Therefore,
in-depth research into OBI radicals is essential for analyzing the reuse of components among
oracle bone characters and understanding the fundamental principles of character composition
within this ancient script.
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However, it is important to emphasize that as an early stage in the development of Chinese
characters, OBI exhibits a certain regularity in its radical structure, but the forms of its com-
ponents are not absolutely fixed [2]. A key observation is that the same radical or component
often displays subtle yet significant morphological variations across different OBI character
forms. These differences are not arbitrary scribbles [3]; they frequently represent adaptive
adjustments made by the scribe. These adjustments aimed to better integrate the component
into the specific meaning or overall structure of the character it was part of, or were constrained
by factors like the writing implement and spatial layout [4]. These nuanced morphological
variations contain rich information about character construction, semantic associations, and
writing conventions. They constitute a valuable window for researching the character-creation
mindset and evolutionary patterns of OBI, holding extremely high value for systematic study.

OBC Radical Annotations OBC Radical Annotations

Figure 1: Illustration of the annotation of radicals in OBI within HWOBC [5]. Overview of radical
annotations for OBI characters. The OBI column lists characters from the HWOBC dataset, while
the Radical Annotations column shows corresponding radical information annotated in the Yin-
queshuwenyan [6] corpus. For each character, the annotation specifies each radical instance 𝑟𝑖 along
with its occurrence count 𝑐𝑖, i.e., how many times 𝑟𝑖 appears in the character.

To delve deeper into these characteristics of OBI radicals and their role in character formation,
we model the relationship between a radical in an oracle bone character and its instances in
different characters. As shown in Figure 1, the relationships between different radicals are not
simply linear combinations, but involve more complex structural compositions, this task presents
certain challenges, manifested primarily in data scarcity and in designing relational modeling
specifically tailored to the aforementioned characteristics. To address these challenges, we
utilize radical data from the YinQiWenYuan [6] database and leverage the powerful associative
generative capabilities of diffusion models. We train a radical-guided diffusion model for OBI
based on this data. The core idea is to input specific radical set information as a condition to
guide the model in generating target oracle bone characters containing that radical set. During
this process, we observe that the model spontaneously evolves a bias for different radicals
under this training paradigm. This bias is manifested as the model spontaneously capturing and
preserving the subtle morphological differences of radicals when they participate in forming
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different characters (as mentioned above), as well as summarizing the positional regularity of
radicals within OBI characters. This bias exhibited during the generation process provides us
with a novel perspective to analyze the morphological characteristics, variation patterns of OBI
radicals, and their deep associations with character meaning and structure.

In addition to structural analysis, radical-conditioned character generation provides a practical
benefit in low-resource settings. Given the scarcity and imbalance of radical annotations in
existing OBI datasets, we hypothesize that our model can generate structurally valid yet diverse
character forms to augment the training data. These synthetic samples may help improve
downstream classification tasks, particularly in the presence of rare radical combinations. We
validate this hypothesis through a controlled data augmentation experiment in Section 3.3.

Overall, our main contributions can be summarized below:
• We propose a new generative task that maps oracle radicals to full characters, framing

character construction as a component-conditioned generation process.
• We show that the generation behavior of a diffusion model inherently reflects structural

biases, allowing us to analyze radical similarity, spatial regularity, and semantic stability
through its learned latent space.

The remainder of this article is organized as follows. In Section 1, we review related work on
oracle bone recognition and multi-instance image generation. Section 2 details our proposed
radical-conditioned diffusion framework, including the embedding design and loss functions.
Section 3 presents experimental settings, evaluation metrics, and both quantitative and qualita-
tive analyses.Finally, Section 4 concludes the paper and discusses future directions.

1. Related Work

1.1. OBI Recognition

The recognition of OBI aims to classify characters in hand-written or authentic OBI images.
Recent advancements [7, 8, 9, 10] in Oracle Bone Inscription (OBI) recognition, particularly
to address challenges in recognizing complete characters, have highlighted the potential of
component-level analysis. For instance, frameworks like the Oracle Bone Inscription Component
Analysis proposed by Zhao et al. [1] utilize image similarity metrics to extract and compare
radical components, revealing their structural roles across different OBI characters. Similarly,
studies on character evolution, such as those employing few-shot learning to trace morphological
changes from OBI to modern scripts, demonstrate that radicals undergo simplification, merging,
and stroke variations to adapt to diverse character compositions [11]. These findings underscore
the necessity of modeling radical-specific variations to achieve robust character generation.
To support such modeling, large-scale datasets like HUST-OBC [12] provide a rich resource,
containing 77,064 deciphered and 62,989 undeciphered character images, many of which exhibit
significant radical variations due to evolving writing styles.

1.2. Multi-instance Image Generation

Multi-instance image generation (MIIG) focuses on synthesizing complex scenes containing
multiple objects with precise spatial relationships and instance-specific attributes. Early text-to-

41



1 2 1

Count Embedding

Count Label

Class Embedding

Concat

Radical Label

MLP

Unet

Down
Block

Down
Block

Up
Block

Up
Block

Mid
Block

Cross Attention

as =+

Attention Maps

Figure 2: Given a target character and its associated radical labels with counts, we encode both the class
and count information into structured embeddings. These are combined and projected into conditioning
vectors, which are injected into the U-Net denoising process via cross-attention. Attention maps visualize
how the model dynamically focuses on radical-relevant regions during generation.

image models struggled with compositional consistency, leading to innovations in instance-level
control [13]. InstanceDiffusion [14] pioneered unified instance conditioning via its UniFusion
module, supporting flexible location inputs (points, masks, boxes) and per-instance textual
descriptions. Large-scale text-to-image diffusion models like Stable Diffusion [15], GLIDE [16],
Imagen [17], and DALL·E 2 [18] Generate rich instances by using rich text combinations.

These works collectively address core MIIG challenges: unifying diverse instance conditions,
mitigating inter-instance interference, and scaling relational reasoning. However, handling over-
lapping instances and abstract spatial instructions remains challenging. To Radical-Conditioned
diffusion task is inherently challenging due to the non-fixed morphology of radicals across
different characters and the need to model complex spatial and compositional relationships.

2. Methodology

Our core objective is to develop a generative model capable of synthesizing OBI charac-
ters under the guidance of specified radical components. Formally, given a set of radi-
cals ℛ = {𝑟1, 𝑟2, ..., 𝑟𝑘} and their corresponding frequency within the target character
𝒞 = {𝑐1, 𝑐2, ..., 𝑐𝑘}, where the 𝑟𝑖 denotes the type of radical and the radical frequency 𝑟𝑖
appears, the frequency 𝑟𝑖 of each radical is included because repetition is semantically and struc-
turally meaningful in oracle characters. For example, repeating a radical may imply intensity or
plurality, and some characters are explicitly formed by duplicating a component. Capturing
such information enables the model to generate character structures that more accurately reflect
historical compositional rules. Our model aims to generate a plausible OBI character image x0

that incorporates the specified radicals with their respective frequencies. The overview of the
Radical-Conditioned Diffusion framework is shown in Figure 2.
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2.1. Conditioned Generation via Radical-Guided Diffusion

We employ a Denoising Diffusion Probabilistic Model [19] as the backbone generative framework.
The key innovation lies in how we effectively condition the diffusion process on the specified
radical set (ℛ, 𝒞).

Radical Representation with Positional Context: To encode both the radical type and
its positional information within the target character’s composition, we design a specialized
embedding module. For each radical instance 𝑟𝑖 appearing 𝑐𝑖 times in the character, we generate
two embeddings: A type embedding e𝑡𝑖 ∈ R𝑑 representing the semantic category of radical
𝑟𝑖.A positional embedding e𝑝𝑗 ∈ R𝑑 representing the sequential order 𝑗 (where 𝑗 = 1, ..., 𝑐𝑖) of
occurrence for that radical type within the character.These embeddings are concatenated [e𝑡𝑖; e

𝑝
𝑗 ]

and projected into a unified conditioning vector e𝑖,𝑗 ∈ R𝑑 via a non-linear transformation:

e𝑖,𝑗 = Proj([e𝑡𝑖; e
𝑝
𝑗 ])

where Proj(·) denotes a projection function implemented by a multi-layer perceptron (MLP)
with a GELU activation. The complete conditioning signal for the diffusion model is the set
of all such vectors {e𝑖,𝑗} for all radical types 𝑟𝑖 ∈ ℛ and their 𝑗 = 1, ..., 𝑐𝑖 occurrences. This
structured embedding explicitly informs the model what radicals are needed and in what
sequence they are expected to appear, capturing potential positional biases observed in oracle
bone script composition.

Integration into Diffusion: These conditioning vectors {e𝑖,𝑗} are integrated into the
diffusion model’s U-Net backbone using cross-attention layers. At each denoising step 𝑡, the
intermediate features of the U-Net decoder attend to the conditioning embeddings, allowing the
generation process to be dynamically guided by the specified radical composition throughout
the diffusion trajectory.

The standard training objective for the diffusion model is to minimize the noise prediction
error. Specifically, during the forward process of diffusion, the clean OBI character image x0 is
progressively corrupted by adding Gaussian noise at timestep 𝑡, resulting in x𝑡. The model 𝜖𝜃
aims to predict the noise 𝜖 added to x0. This standard diffusion loss is defined as:

ℒ𝑑𝑖𝑓𝑓 = Ex0,𝜖∼𝒩 (0,I),𝑡

[︀
‖𝜖− 𝜖𝜃(x𝑡, 𝑡|{e𝑖,𝑗})‖22

]︀
Here, 𝜖𝜃(x𝑡, 𝑡|{e𝑖,𝑗}) denotes our conditional diffusion model, which takes the noisy image

x𝑡, the timestep 𝑡, and the radical conditioning embeddings {e𝑖,𝑗} as input to predict the noise
𝜖.

2.2. Content-Aware Perceptual Loss

Standard diffusion training optimizes the prediction of the noise 𝜖 added at step 𝑡. To enhance
the semantic fidelity and structural coherence of generated characters, particularly respecting
the subtle morphological variations of radicals, we introduce a supplementary Content-Aware
Perceptual Loss ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡 [20].
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This loss operates on the predicted clean image x̂0 at an intermediate denoising step 𝑡, derived
from the current noisy state x𝑡 and the predicted noise 𝜖𝜃:

x̂0 = (x𝑡 −
√
1− 𝛼̄𝑡𝜖𝜃)/

√
𝛼̄𝑡

where 𝛼̄𝑡 is the cumulative product of the variance schedule. We extract multi-scale features
𝜑𝑙(·) from different layers 𝑙 of a pre-trained feature extractor (VGG16 network) for both the
true clean image x0 and the predicted x̂0.

Crucially, ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡 weights the contribution of different feature levels based on the current
timestep 𝑡:

ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
1

𝑁

∑︁
𝑙

𝑤𝑙(𝑡) · ‖𝜑𝑙(x0)− 𝜑𝑙(x̂0)‖22

Here, 𝑤𝑙(𝑡) is a time-dependent weighting function. Low-level features (capturing edges,
textures) are emphasized during high-noise stages (large 𝑡), as they are crucial for establishing
the fundamental radical shapes and layout early in denoising. Conversely, high-level features
(capturing semantic structures) are emphasized during low-noise stages (small 𝑡), refining the
semantic coherence and fine details of the radicals and their integration as the image nears
completion. 𝑁 is a normalization factor accounting for the number of active feature elements
at each timestep. This dynamic weighting ensures the loss focuses on the most relevant visual
aspects at each denoising phase, significantly improving the preservation of radical morphology
and overall character integrity.

2.3. Overall Training Objective

The complete loss function for training our radical-guided diffusion model combines the standard
DDPM noise prediction loss ℒ𝑑𝑖𝑓𝑓 , and the Content-Aware Perceptual Loss ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡:

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑑𝑖𝑓𝑓 + 𝜆ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡

where 𝜆 is hyperparameter balancing the contribution of each loss term. The model is trained
end-to-end, learning to generate semantically coherent and structurally accurate oracle bone
characters conditioned on the specified radical set and counts, while simultaneously developing
rich internal representations of radical morphology and compositional rules.

3. Experiment

In this section, we evaluate our radical-conditioned diffusion model for oracle character genera-
tion. Conventional metrics like FID or Inception Score are unsuitable, since oracle characters
admit multiple valid forms for the same radical set. Instead, we adopt structure-aware evalua-
tion: multi-label classification (Section 3.3), case studies (Section 3.4), and semantic embedding
visualization (Figure 5) to assess whether generated characters contain the intended radicals
while maintaining structural diversity and positional patterns observed in real OBI samples.
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Figure 3: Radical statistics. (a) Radicals per character. (b) Radical frequency distribution (sorted). Shows
long-tail pattern: few frequent, many rare radicals.

3.1. Dataset

We construct our dataset based on the HWOBC [5] collection, which contains handwritten oracle
character images covering 3,881 distinct character categories. A large portion of these categories
have been structurally annotated with radical information in the Yinqi Wenyuan project. Using
these annotations, we associate 185 distinct radicals with 3,767 oracle character categories,
resulting in 80,823 annotated character images. Each annotated character is associated with one
or more radicals that reflect its structural components. The distribution of radical annotations
per category is visualized in Figure 1 and the distribution of radicals shown in Figure 3.

3.2. Implementation details

All experiments have been performed on a platform with an NVIDIA GeForce RTX 4090 graphics
card. The deep learning framework used was PyTorch 2.6.1 with CUDA 12.4. The epochs and
batch size have been set to 400 and 64, All models have been trained using the AdamW optimizer,
with an initial and final learning rate of 0.0001, momentum of 0.937, and weight decay of 0.0005.
The learning rate has adopted the warm-up cosine annealing algorithm. The learning rate of
the model gradually increases within the first 3 epochs. In the experiment, nearly all models
triggered early stopping around epoch 400, which means sufficient training has been conducted
on the whole dataset.

To evaluate the effectiveness of our radical-guided diffusion model and assess the utility
of the generated samples in downstream multi-label classification tasks, we construct a con-
trolled experimental setup based on the YinQiWenYuan [6] oracle bone character dataset. Each
character in the dataset is annotated with one or more radicals, and the task is formulated as
multi-label classification over these radicals.

Due to the highly imbalanced nature of radical distributions and the limited number of
samples for certain rare radicals, it is crucial to ensure that all radicals are observed during
training while avoiding trivial memorization of character samples. To this end, we adopt a
coverage-based greedy selection strategy to construct the training set. Specifically, we iteratively
select samples that contribute the most previously unseen radicals until the entire radical set
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is covered. This ensures that the model is exposed to all radical types during training while
leaving a subset of unseen character forms for evaluation.

The remaining samples are filtered to construct a test set such that each test sample contains
only radicals already present in the training set. This constraint ensures that the evaluation
focuses on compositional generalization rather than extrapolation to unseen radical types.
Finally, we randomly sample 10% of the total dataset to form the test set, with the remaining
90% used for training. Both the radical-guided diffusion model and the baseline multi-label
classifier are trained on this split.

3.3. Performance analysis

To evaluate diffusion-based augmentation, we generate 8,000 synthetic oracle bone character
images for each radical set size (1–5) using our radical-conditioned diffusion model. The
synthetic data are combined with the original training set to retrain the multi-label classifier.

Importantly, the classification model used to evaluate augmentation effects is trained from
scratch under two conditions: with and without the inclusion of diffusion-generated data. This
enables a direct comparison of the impact of synthetic data on the classifier’s performance
across multiple metrics.

Table 1 summarizes the performance of the classifier before and after introducing diffusion-
generated samples into the training set. Overall, the inclusion of generated samples leads to
consistent improvements across all evaluation metrics. Notably, the Average Precision improves
from 0.671 to 0.702, and the Subset Accuracy increases from 0.286 to 0.307. The Hamming Loss
is also slightly reduced, indicating better precision in multi-label predictions.

Table 1
Comparison of multi-label classification metrics before and after data augmentation. Arrows (↑/↓)
indicate that higher/lower values are better, respectively.

Metric Before Augmentation After Augmentation

Average Precision (AP) ↑ 0.671 0.702
Coverage Error ↓ 15.734 14.730
Hamming Loss ↓ 0.00766 0.00755
Subset Accuracy ↑ 0.286 0.307
F1 Score ↑ 0.570 0.601
Jaccard Index ↑ 0.418 0.440
Recall ↑ 0.549 0.592
Precision ↑ 0.640 0.658

These results demonstrate that the diffusion model not only generates plausible character
forms conditioned on radical sets but also introduces useful variance into the training data
that benefits generalization. The improvement in recall and F1 score further suggests that the
model becomes more capable of identifying rare or co-occurring radicals after exposure to the
synthetic examples. This validates our hypothesis that the morphological diversity captured by
the diffusion model can enhance downstream classification performance.
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3.4. Case study

Input Radical Generation Sample Real Sample

Easy Instance

Complex Instance

Figure 4: Visual comparison of generated and real oracle bone characters conditioned on specified
radicals. Each row shows: (1) the input radical(s), (2) multiple generated samples guided by the same
radical(s), and (3) real samples containing those radicals. The upper half illustrates easy instances with
simpler structures, while the lower half showcases complex instances with intricate radical combinations.

To further evaluate the fidelity and diversity of generated samples, we conduct a qualitative
case study comparing generated characters with real ones sharing the same radical components,
as shown in Figure 4. For each example, we provide the input radical(s), multiple generated
results, and real oracle bone characters containing those radicals.

In the Easy Instance setting, radicals are typically standalone or structurally dominant.
The generated characters preserve visual similarity to real samples while capturing stylistic
nuances—stroke thickness, spatial balance, and subtle morphological variations typical of
handwritten oracle scripts.

In the Complex Instance setting, inputs include multiple radicals with diverse layouts and
structural entanglement. The model produces plausible characters that retain radical identity and
arrangement, often applying adaptive transformations—stretching, rotation, or compression—to
emulate real OBI spatial strategies. These results demonstrate the model’s ability to internalize
compositional flexibility and radical-level variation.

Overall, the visual results support our claim that the radical-conditioned diffusion model
effectively captures both the identity and adaptive behavior of radicals in context, enabling
realistic and semantically meaningful character generation.

To investigate how the model organizes radical information, As shown in Figure 5, we
extract the embedding vectors e𝑖,𝑗 and visualize them with t-distributed Stochastic Neighbor
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Figure 5: t-SNE visualization of radical embeddings extracted from the conditioning encoder. Each point
corresponds to a specific radical instance. Similar radicals are clustered together, revealing potential
confusions, while isolated radicals form distinct clusters.

Embedding(t-SNE) [21]. We find that radicals with similar morphological structures cluster
closely in the embedding space, suggesting the model captures structural similarity. However,
this can cause confusion during generation, as the model may struggle to distinguish between
similar radicals, especially those sharing stroke patterns or symmetry. In contrast, radicals
with larger shape differences are easier to cluster and preserve stably during generation, with
less distortion or substitution. This implies a trade-off between embedding expressiveness and
discriminability, which may be improved via contrastive regularization or additional supervision.

4. Conclusion

In this work, we propose a radical-conditioned diffusion model for oracle bone character
generation, which effectively captures the morphological variations and combinatorial patterns
of radicals. By incorporating embeddings that encode both radical identity and positional
information, the model preserves subtle visual features of radicals across different character
contexts. Our experiments demonstrate that such a generative approach facilitates structural
understanding of oracle bone script and models the compositional relationships among specific
radicals. Future work may integrate structural priors or contrastive learning to further enhance
radical disambiguation, and extend the task to generate corresponding glyphs from different
historical stages using radical-based priors derived from oracle bone inscriptions.
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