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Abstract

Knowledge Graph Embedding models are widely used to support predictive and reasoning tasks involving
structured data. However, they often fail to capture the full semantic richness of formal ontologies, particularly
those expressed in Description Logics. This PhD research project investigates how ontological knowledge can be
systematically incorporated into Knowledge Graph Embedding models to improve their semantic awareness,
generalization, and interpretability. The work is application-driven, with a specific focus on the railway domain,
which presents complex, hierarchical, and mission-critical data scenarios. A modular ontology-integration
framework is proposed, incorporating ontological knowledge into negative sampling, loss constraints, and
embedding alignment via geometric representations of Description Logic axioms. Additionally, the project
addresses an area that has been largely overlooked in the literature: evaluating the semantic validity of Knowledge
Graph Embedding models. The ultimate objective is to develop a reusable, domain-agnostic methodology for
constructing ontology-aware machine learning methods that bridge the gap between symbolic knowledge and
statistical learning, with relevance in both academia and industry.
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1. Introduction and Research Questions

The rapid growth of both structured and unstructured data has intensified the need for advanced
techniques for representing, integrating and reasoning about complex knowledge. Knowledge graphs
(KGs) have emerged as a robust solution for representing entities and their relationships in graph
form. They facilitate the integration of diverse data sources, providing a unified and interconnected
perspective on knowledge [1]. KGs are pivotal in enhancing data interoperability and are instrumental
in tasks such as semantic search, link prediction, and fault detection. They offer a unified, contextualized
view of heterogeneous data sources.

To further enhance the expressive power and reasoning capabilities over KGs, ontologies provide
formal, logic-based vocabularies that define domain concepts, relationships, hierarchies, properties,
and constraints. Ontologies promote semantic interoperability across systems and enable structured
knowledge to be injected into machine learning models [2]. Integrating such ontological knowledge
into knowledge graph embedding (KGE) models has shown promise in enhancing the performance of
predictive tasks [3].

Yet current approaches often underutilize the full expressiveness of Description Logics (DL), which
underpin most formal ontologies [4]. Current literature on KGE models primarily focuses on surface-
level graph structures or limited aspects of ontologies, such as class hierarchies and domain and
range constraints [5, 6], often ignoring richer semantic features such as functional and role properties,
disjointness, and the explicit negation of concepts. Consequently, these models struggle with deep
reasoning and generalization [7, 8], particularly in domains that require high semantic fidelity.
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This research aims to systematically explore the injection of ontological knowledge into KGE models,
addressing both the theoretical and the practical challenges. Specifically, this research has a focus on
the railway engineering domain, where real-world challenges around safety, complexity, and semantic
consistency make it an ideal application for ontology-enhanced KGE methods.

The modern railway system has evolved with digital technologies and automation, shifting from
manual operations to intelligent, autonomous control. Its complex, interconnected environment poses
diverse and unpredictable risks, increasing the need for efficient formalization of domain knowledge,
automatic maintenance and diagnosis, and system compliance with implant specifications [9]. Systems
must also comply with the “mission critical” domain, which is defined as “one where a hazard can
degrade or prevent the successful completion of an intended operation” [10].

This highlights the need for applications able to systematically formalize the domain knowledge
(formalization), reason and produce insights and results on the produced knowledge (exploitation), and
be able to support the human user in their operations, offering interpretation of its results (explainability).
The field of railway engineering is a natural application area for this work. Knowledge graphs are a
powerful way of representing this rich structure, and ontologies can formalize system-level rules and
constraints. Nevertheless, integrating ontological knowledge into machine learning (ML) systems that
support railway operations remains largely unexplored.

The aim of this research is to bridge the gap between symbolic reasoning and statistical learning by
incorporating ontological semantics at various stages of the KGE pipeline, such as negative sampling,
loss functions, and embedding geometry. My overarching goal is to enhance the semantic awareness,
reasoning accuracy, and interpretability of ML systems operating in real-world, safety-critical contexts.
To address these challenges and guide the development of a semantically enriched KGE framework,
this research is structured around the following key questions:

« RQ1: How can formal ontological knowledge be systematically injected into KGE models without
compromising scalability or performance?

« RQ2: What impact do ontological constraints have on the semantic consistency and predictive
accuracy of KGE models?

« RQ3: How can we design evaluation methodologies that go beyond ranking metrics to measure the
semantic validity of predictions made by ontology-aware KGE models?

« RQ4: How can learned representations of ontologies and knowledge graphs support domain experts
in complex, mission-critical applications such as railway system analysis and planning?

2. State Of The Art

The core of this PhD research covers a wide range of areas of interest, ranging from: learning knowl-
edge graph representations; formal ontologies embedding in their different degrees of expressiveness;
methodologies able to integrate both structural and ontological knowledge in low dimensional embed-
ding for automatic reasoning; as well as the in-depth evaluation of predictive models. This section
will review the relevant literature on these research areas, from knowledge graph embeddings to their
domain-specific application in railway engineering.

2.1. Knowledge Graph Embedding

Knowledge graph embedding (KGE), also referred to as multi-relational learning, is a type of rep-
resentational learning that seeks to embed KG components (entities and relations) into continuous
vector spaces. This facilitates the use and exploitation of knowledge in downstream applications [1].
KGE models fall into one of several categories: distance-based, where relations are seen as a vector
transformation function that maps head entities closer to tail entities; semantic matching, which scores
triplets based on a semantic similarity score; and graph neural network (GNN) approaches, which gather
knowledge from the neighborhood of a target node and aggregate multi-hop structural information,
placing entities with similar neighbors together in the embedding space [11].



While classical distance-based approaches are simple and interpretable, they typically assume fixed
geometric transformations that cannot model intricate dependencies and hierarchical structures in
KG [12]. More sophisticated methods with geometric or probabilistic interpretations have therefore
emerged to address these limitations, using advanced representations that demonstrate the model’s
ability to embed relational properties and logical rules [13, 14]. Using neural network-based approaches
in KGE offers significant advantages, particularly in inductive settings, due to their ability to generalize
beyond the initial graph on which they were trained [15]. These graph convolution-based approaches
generalize the message-passing algorithm in the multi-relational setting, enabling their application to
KGs [16].

The popularization of the attention mechanism in the field of natural language processing [17], led
to the development of several approaches that adapt this technique to graph data by assigning different
importance to nodes within the neighborhood [18]. All the attention-based approaches differ in the level
of the graph on which the attention mechanism is applied: whether it is on triplet level [19], query [20],
relations and entities [21], meta-paths [22] or classes. Specifically in [23] the authors incorporate the
self-attention mechanism on domain and range properties (approximated using the local closed word
assumption on node neighbors), providing a first example of how ontological knowledge can be used to
enrich knowledge representation.

2.2. Ontology Embedding

Ontologies are fundamental to the Semantic Web [24], enabling the representation, reasoning, and
sharing of knowledge across domains. An ontology is a formal explicit specification of a shared
conceptualization of a domain [4], written in formal languages such as Web Ontology Languages (OWL)
and rooted in Description Logics (DL), the formal language that provides the mathematical underpinning
for ontology design and reasoning [25]. The aim of ontology embedding is to project axioms into a
low-dimensional embedding space while preserving the logical properties of the knowledge base [26].
This generates an approximate model of the knowledge base in the sense of an interpretation of the
DL, which is often formalized in the literature as either ALC or ££1T. One solution is to treat the
ontology as a knowledge graph using classical KGE algorithms. However, this approach results in a
significant loss of information, discarding the richness of language [27]. In [7] the authors provide an
in-depth analysis of the projection capabilities of ontology embedding models. Another solution is to
use geometric models that project axioms into a topological space. These models are able to preserve
the semantics of concept and role descriptions. Examples include spheres, boxes [28], lattices [26] or
cones [29].

2.3. Joint Ontology and Knowledge Graph Embedding

The core of this PhD research lies in jointly learning the structural-relational information of KGs and
the rich semantics of DL. Although the usefulness of the SOTA KGE models in link prediction tasks
has been demonstrated across various datasets, these methods often fail to capture even simple DL
rules [30]. Typically, these models ignore DL semantics, focusing their learning on surface-level patterns
and primarily representing the ABox. They disregard the richer schema-level information contained
in the TBox [31], often focusing only on hierarchical type information [32]. Some approaches focus
specifically on concept subsumption (e.g., node types and hierarchies) and view the KG as having
two levels: an upper level that describes concept subsumption relationships and a lower level that
describes relationships between entities and their associated concepts [5]. Others inject and leverage
ontological information during the negative sampling phase. For example, soft-type constraints are
used to guide negative sample generation [33] (triples assumed to be false statements). Alternatively,
in [34], the authors propose an iterative negative sampling approach that uses a reasoner to gather
inconsistent predictions that populate the negative sample set for the next training phase. Another
approach involves using relation properties to constrain the score function in KGE [3], accounting for
inverse and equivalent relations on both classes and properties, as well as their hierarchical structure.



In [6] the proposed method further injects knowledge by using a reasoner to produce negative
samples that exploit ontology axioms, following a similar formulation to the methods described earlier.
A common oversight in literature is the consideration of axioms and hierarchies over relationships,
with few works incorporating both concept and relation hierarchies, as discussed in [2].

2.4. Evaluation of Ontology-Enriched Embeddings

An underexplored area in the literature is the in-depth evaluation of KGE models that incorporate
ontological knowledge (i.e., constraints derived from axioms such as domain, range, or class hierarchies).
Most existing evaluation practices, particularly in the context of link prediction tasks (e.g., predicting
the most probable tail entity ¢’ given a triple (h,r,?), or head prediction in the reverse form), rely
on metrics borrowed from information retrieval. These include ranking-based metrics such as Mean
Reciprocal Rank (MRR) or Hits@K, which assess how well the model ranks the correct entity among all
possible candidates based on its internal scoring function. Although these metrics accurately measure
the model’s ability to retrieve the correct entity, they do not capture the quality of the learned semantics.
In other words, they fail to evaluate whether the predicted entities are semantically valid in relation to
the ontology.

For example, [35] introduces a semantic-aware evaluation metric that measures the proportion of
semantically valid triples among the top-K predictions. This metric uses compatibility constraints
derived from domain and range axioms, as well as class hierarchies. For instance, predicting ‘dog’ as
the object for the ‘hasOccupation’ relation would be invalid if the relation’s range expects instances
from ‘Profession’. Similarly, [34] proposes a metric that counts the number of semantically inconsistent
predictions among the top-K candidates.

Despite these contributions, there has been little large-scale, systematic evaluation of KGE models that
integrate ontological axioms using metrics specifically designed to assess semantic validity. This presents
a critical gap: in scenarios where standard ranking metrics yield comparable results, ontology-enriched
models should, in principle, outperform traditional models when evaluated using semantic-aware
metrics. Addressing this gap is a key objective of our work, as it is essential for a full understanding of,
and demonstration of the benefits of, ontology-aware KGE.

2.5. Applications of Ontologies and KG to Railway Engineering

This research project focuses on incorporating ontological knowledge into machine learning models
for knowledge graphs, particularly in the field of railway engineering. Knowledge graphs and formal
ontologies provide a robust basis for handling the complexity and diversity of information in this field,
improving data organization, facilitating semantic integration, and supporting sophisticated analytical
capabilities via learning algorithms [36].

Most existing research in this area concentrates on extracting schema-level and instance-level
information from textual specification documents, since many system rules are not yet formalized
in machine-readable languages. Despite this, the explicit use of formal ontological knowledge in the
railway domain remains largely underexplored [36], even though ontologies have already demonstrated
significant value in Industry 4.0 contexts, where there is high demand for formal, semantically rich, and
interoperable data infrastructure [37, 38].

Examples of the potential impact are beginning to emerge. For instance, [39] introduces a two-view
knowledge graph to support engineers in path alignment tasks, showing how integrating knowledge
graphs enables systems to adapt dynamically to new knowledge. More broadly, railway applications
such as traffic management, safety rule compliance, predictive maintenance, and infrastructure inter-
operability could benefit from ontological models that make implicit domain knowledge explicit and
machine-actionable. However, systematic approaches that combine such ontological representations
with learning-based methods remain scarce, highlighting a research gap that this project aims to address.



3. Methodology

3.1. Central Research Problem

Despite considerable progress in both KGE and ontology embedding, existing methods remain limited
in their ability to jointly capture the structural patterns of KGs and the formal semantics provided by
ontologies. KGE models have achieved strong performance in link prediction tasks, but they largely
ignore schema-level information such as class hierarchies, relation properties, domain and range con-
straints, or explicit negation, focusing instead on surface-level statistical patterns. Ontology embedding
approaches, by contrast, are designed to preserve logical semantics but are typically developed and
evaluated in isolation, without integration into predictive models. This disconnect has resulted in a lack
of systematic frameworks that enrich KGE with ontological knowledge while maintaining compatibility
with existing architectures and evaluation practices.

Addressing this gap is particularly important in safety-critical and data-intensive domains such as
railway engineering. Railway systems involve heterogeneous data sources, strict safety and compliance
rules, and evolving operational constraints, all of which require models that are not only predictive but
also semantically consistent with domain knowledge.

Developing approaches that combine structural learning with ontological semantics is therefore
essential to improve both the accuracy and trustworthiness of predictive models while enabling their
practical application in domains where semantic validity is as critical as raw performance.

3.2. Proposed Approach

In this work, the term “ontology injection” refers to the systematic process of aligning a KGE model
with the semantics of an ontology. By ontology injection we mean not only enriching the model with
additional features but also ensuring that the learned representations explicitly respect ontological rules
and axioms, such as class hierarchies, relation properties, domain and range constraints, or explicit
negations. In practice, injection entails incorporating ontological knowledge directly into the learning
process so that the resulting embeddings are both topologically informed by the graph structure and
semantically constrained by the ontology.

The first step is to exploit the key properties of ontologies, either by injecting them when they are
explicitly available or by inferring them from the graph structure when schema-level information is
missing. This enables the discovery of new, exploitable knowledge while grounding the embeddings in
a formally defined semantic framework. Unlike purely structural models, ontology-injected embeddings
are expected to reuse existing domain knowledge rather than relearning patterns already encoded at
the schema level, leading to improvements in both accuracy and reliability.

A central novelty of this research as opposed to current literature, lies in its focus on developing a
generic ontology injection module, rather than a single ontology-enriched KGE model. The goal is not
to design yet another specialized architecture, but to provide a flexible component that can be integrated
with any KGE method to enhance semantic validity. This modular perspective is what motivates the
use of the term “ontology injection”: ontological semantics are injected into existing models in a way
that is architecture-agnostic, extensible, and reproducible.

In line with these objectives, this research investigates three complementary strategies: injection
during negative sampling, where ontological axioms are used to guide the generation of corrupted
triples, avoiding semantically invalid samples and thus producing more informative training pairs
(positive triples and corrupted triples); injection into embedding spaces, where axioms are translated
into geometric constraints; and injection via loss constraints, where the model’s optimization objec-
tive is augmented with penalties or regularizers derived from logical axioms, explicitly discouraging
inconsistent predictions.

Together, these strategies form a structured framework for integrating ontological knowledge into
KGE models. The overarching goal is to move towards semantically grounded representations that
are consistent, interpretable, and applicable in safety-critical domains such as railway engineering. A
conceptual overview of this framework is presented in Figure 1.



Schema Level
(Ontology)

ALC, EL + +,SROI, ...

Y \ 4
Embedding Space /[ Loss Constraints \ Negative Sampling
Injection Injection Injection

Ontology Embedding Eessaren Typz,ieDrggLairs, Feifxcr19e,

_____ [ Reasoner
Concept and Relationship |
Geometrical Embedding |

Spact |

e,

Instance Of

N Relationship Proprieties
S, Constraints
| r=q K
_____ s |
y

Semantically Valid Hard
Negatives /

KGE Training Pipeline

Embedding Model

Relation Loss Function
Embedding
Concept
Embedding
Entity

Embedding

Instance Level
(Knowledge Graph)

Embedding
Mechanism

Trainin

Domain Specific
Rules
(e.g. railway implant specific rules)

Domain / Requil

Figure 1: General conceptual framework for KGE ontology injection, encompassing the areas of embedding
space injection, loss constraints, and negative sampling (from left to right). The bigger arrows indicate the source
of additional schema/rule-based knowledge in the KGE model.

3.2.1. Injection in Negative Sampling

A first approach to leverage ontologies during the negative sampling phase is to generate more seman-
tically accurate negative samples for training KGE models. Although the use of type constraints and
reasoning in negative sampling has been explored in previous studies and proven effective [33, 34],
existing work still lacks comprehensive approaches that exploit the full expressive power of ontologies.
This highlights an open research direction focused on developing novel sampling strategies capable of
capturing the complete range of available background knowledge. This strategy aligns closely with
adversarial negative sampling approaches, where an auxiliary model is used to predict harder negatives.
Rather than directly injecting ontological constraints, an adversarial negative sampler can leverage a
KGE or ontology embedding model that has been specifically trained to capture ontological semantics.
Assuming this model accurately reflects the semantic structure of the domain, it can guide the sampling
process to produce more informative and challenging negative samples for training. The conceptual
schema of this proposed implementation is provided in Figure 2. Adversarial negative samplers based
on ontology-injected models are still lacking in the literature and present a promising research direction.
However, this approach relies on the availability of ontology-injected models, which are developed
through the other research directions explored in this PhD study.
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3.2.2. Injection in Embedding Spaces

The geometric interpretation of DL in vector spaces has been proven to be an efficient and sound
method of representing symbolic knowledge in numerical form [29]. These approaches make it possible
to embed both defined concepts and the axioms that describe their relationships (including explicit
negation, often ignored in SOTA KGE models) into a structured vector space.

In the proposed approach, this process is organized into two phases. First, an “ontology embedding
space” is constructed in which logical axioms, class hierarchies, role properties, and constraints are
represented in a machine-readable vector form. This space serves as a semantic reference model that
encodes the formal structure of the ontology. Second, this ontology-informed space is used to constrain
and guide the training of KGE models: entity and relation embeddings learned from the ABox are
projected into or regularized against the ontology space, ensuring that predictions remain consistent
with schema-level semantics. In this way, the ontology embedding acts as a supervisory signal that
aligns structural learning with domain rules.

To further refine this process, when multiple ontological constraints apply simultaneously to the same
embedding (e.g., domain and range restrictions in addition to hierarchical constraints), an attention
mechanism (called in this work “ontological attention”) can be introduced to dynamically weight their
relative influence, aiming to minimize prediction inconsistencies. This allows the model to prioritize the
most relevant constraints in context, rather than enforcing them uniformly. The resulting integration
balances symbolic fidelity with flexibility, reducing semantic violations without over-constraining the
embeddings. Overall, this coupling of ontology embedding spaces with loss-based constraints provides a
principled method of ontology injection, transforming abstract DL semantics into operational guidance
for KGE models and enabling consistent, semantically grounded representations across both ABox and
TBox levels.

3.2.3. Injection in Loss Constraints

Loss constraints have been shown to enrich the learned model semantics by leveraging relational
properties [3]. While these approaches have proven useful, a general framework for broadly applicable
ontology injection is still missing, which hinders large-scale evaluation and comparison. Moreover,
the application of loss constraints to neural-based models remains relatively understudied. I intend
to explore this topic, particularly in the context of GNNs, which are well-suited for generalizing over
KG structure and can operate in inductive settings (making predictions even on previously unseen
relationships between entities). A promising research direction is the development of a model that
can adapt to new knowledge and rules, ensuring that the learned embeddings align with underlying



semantic constraints and relationships. This alignment is critical for enabling generalization and
inductive reasoning, thus supporting broader applicability across heterogeneous domains. Furthermore,
my research is closely tied to a specific application domain: the railway ecosystem. This domain is
characterized by schema-level knowledge (capturing general semantics), instance-level knowledge
(e.g., implants), and implant-specific rules, known as “domain specifications” or “domain requirements”.
While a general model is necessary to capture the core semantics of the domain, it is equally important
to optimize it for context-specific rules. Loss or structural constraints in KGE models offer a direct
mechanism to fine-tune and adapt a general model to these domain-specific requirements. Unlike
prior work, which often focuses on a narrow subset of ontological features, this approach also aims
to leverage a broader range of axioms and semantics, incorporating the ontology embedding spaces
developed in earlier phases.

3.3. Goals, Motivations, and Challenges

A key obstacle in advancing ontology-aware KGE methods is the lack of standardized, reproducible
resources. Current datasets, ontologies, and implementations are fragmented across ad hoc efforts,
forcing researchers to manually formalize inputs and build custom pipelines. This fragmentation slows
progress, raises the entry barrier, and prevents systematic evaluation and comparison of methods. A
further challenge lies in bridging symbolic and neural paradigms. Ontology reasoners are typically
JVM-based, while KGE models rely on GPU-accelerated tensor frameworks. Efficiently integrating
these ecosystems requires careful design to preserve both scalability and semantic fidelity.

The goal of this research is to develop a general, extensible framework for incorporating ontolog-
ical knowledge into KGE models. The framework is designed to be domain-agnostic yet adaptable,
supporting both generic use cases and domain-specific applications. Railway engineering serves as
a key case study, where heterogeneous data sources (e.g., interlocking systems, track infrastructure,
sensor networks) and strict safety rules highlight the need for models that are not only predictive but
also semantically consistent. Ultimately, the ambition is to deliver a flexible and reusable solution that
unifies symbolic reasoning with neural learning. Such a framework would lower technical barriers,
enable reproducible research, and support the development of ontology-enriched KGE pipelines across
both academic and industrial contexts.

3.4. Evaluation Plan and Success Criteria

Datasets. Evaluation will be carried out on a mix of standard benchmark datasets and ontology-
enriched datasets. Classical benchmarks such as WN18-RR, FB15K-237, NELL, YAGO3-10, DBPedia50K,
and DBPedia100K will be used to ensure comparability with prior work in the KGE literature. However,
these datasets primarily consist of raw triples (ABox assertions) and generally lack schema-level
information (TBox axioms), limiting their ability to test semantic validity. To address this, evaluation
will also include datasets that combine triples with subsets of ontologies, such as YAGO4-20, YAGO39K,
DBPedia39K, and DBPediaYAGO, which trade off computational feasibility with rich schema information.
In addition, ad hoc datasets in OWL format will be developed to support controlled experiments on
specific ontological constructs. Finally, a domain-specific case study based on railway engineering
data will be conducted. This will provide a setting where industry-standard rules and compliance
requirements are encoded in ontologies, enabling an assessment of the practical utility of the proposed
methods in a safety-critical environment.

Metrics. Since the primary tasks are knowledge graph completion (link prediction) and triple classifi-
cation, evaluation will adopt the standard metrics used in the field. For link prediction, these include
Mean Reciprocal Rank (MRR) and Hits@K, while for triple classification, Precision, Recall, Accuracy,
F1-score, and Area Under the Curve (AUC) will be reported. While these metrics capture general
predictive performance, they do not account for semantic validity, i.e., whether predictions respect
ontological constraints. To address this, semantic-aware metrics will also be applied. For link prediction,



Sem@K [35] will measure the proportion of semantically consistent triples in the top-K predictions,
while Inc@K [34] will count inconsistent triples among the top-K. For triple classification, particular
emphasis will be placed on detecting cases where semantically inconsistent triples are predicted as true,
as these are especially problematic in domains such as railway engineering. A further contribution of
this research will be the design and evaluation of additional semantic-aware metrics, extending current
approaches to more comprehensively capture the consistency of predictions with respect to ontologies.

Success Criteria and Expected Results. The primary measure of success is the ability of ontology-
enriched KGE models to consistently produce semantically valid predictions, thereby reducing the
frequency of inconsistent outputs that violate ontological constraints. While improvements in classical
predictive accuracy remain relevant, they are considered secondary to gains in semantic reliability.
Concretely, models will be evaluated on three dimensions: maintaining or surpassing baseline perfor-
mance on established benchmarks to ensure competitiveness, achieving measurable improvements on
semantic-aware metrics such as higher Sem@K and lower Inc@K, which directly quantify the reduction
of inconsistent predictions, and demonstrating interpretable alignment between predictions and domain
rules, enhancing the trustworthiness of the model.

In the railway case study, success is specifically tied to the model’s ability to respect safety-critical
constraints and compliance rules while preserving predictive utility. A model that avoids semantically
inconsistent predictions (such as proposing impossible states or invalid relations) will be considered
more successful than one achieving marginally higher accuracy at the cost of invalid outputs. The
overarching expectation is to deliver models that combine strong predictive capability with semantic
integrity, prioritizing reliability and consistency as the key enablers of adoption in real-world, safety-
critical systems.

4. Preliminary Results

4.1. Negative Sampling Extended Framework

Building on the challenges identified in integrating ontological knowledge into KGE workflows (particu-
larly the lack of standardized, reproducible tools) the initial research direction focused on addressing this
gap through the injection of ontological properties into the negative sampling phase of KGE training.

The first concrete contribution was to extend a widely adopted knowledge graph embedding frame-
work with a negative sampling module that can incorporate additional semantics from ontologies. This
module also supports a generalized interface for adversarial sampling strategies. This work marks a
foundational step towards enriching existing KGE methods with ontology-aware capabilities. Integrat-
ing support for ontological axioms directly into the negative sampling process enables the framework
to be used seamlessly across a broad range of datasets and knowledge graphs, regardless of domain or
complexity. Crucially, this extension also provides a modular and standardized interface for building and
experimenting with new negative samplers. This significantly accelerates the development, evaluation,
and ablation of novel techniques by eliminating the need for fragmented or ad hoc implementations.
It paves the way for the subsequent research directions described earlier (such as ontology injection
via loss constraints or geometric DL embeddings) by establishing a reusable and extensible founda-
tion. Furthermore, by aligning with a widely used benchmarking framework, it ensures compatibility
with existing literature and promotes reproducibility, thereby facilitating meaningful comparisons and
broader community adoption.

Specifically, I extended the PyKEEN framework' by implementing six additional negative sam-
plers [40]. These samplers are based on a generalized standardization process that simplifies the
integration of new sampling strategies. Four of these samplers are directly derived from the research
questions and directions outlined in the previous sections. The TypedNegativeSampler leverages

'https://pykeen.readthedocs.io/en/stable/
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domain and range constraints obtained through reasoning over the schema (TBox) to restrict the nega-
tive sampling pool at the triple level. A variant of this method uses instance-level (ABox) information
to approximate domain and range classes. The AdversarialNegativeSampler provides an abstract
implementation of adversarial sampling, where candidate negatives are selected based on a distance
measure between the true entity and the entity predicted by an auxiliary adversarial model. To the best
of my knowledge, this is the only implementation currently available that supports both adversarial
and ontology-based sampling within the same feature-rich framework, using any user-defined model.
Additionally, we provided a cleaned version of the datasets with pre-processed ontological information
ready to use for experimentation. All the materials and documentation are available in the repository. *

4.2. Type Information Availability Analysis

Following the implementation of the new negative sampling strategy, it became possible to further
analyze sampling behavior when integrating additional semantic information from ontologies. A key
challenge in working with knowledge graphs is their inherent incompleteness (partly due to the open-
world assumption) which means not all entities and relations are connected to schema-level ontological
information. This introduces a significant problem: if ontology-based sampling strategies cannot be
applied consistently across the entire dataset, it becomes difficult and potentially misleading to evaluate
and compare different methods.

Motivated by these considerations, an analysis was conducted on the negative pool statistics produced
by the newly implemented samplers [40]. Specifically, the evaluation focused on the number of distinct
negative entities that can be generated per triple under each sampling strategy. Figure 3 presents these
statistics for three datasets, all enriched with ontology data, such as domain and range constraints and
class hierarchies, except for FB15K, where the SoftType variant was applied for compatibility with the
TypedNegativeSampler.

Results show that missing ontological annotations (despite reasoning to complete deducible missing
information) lead to significantly small negative pools (reminding that the most used negative samplers,
namely the random one, can use the whole set of entities as a candidate negative pool). For example, in
the DBpedia50 dataset, over 30% of triples have a negative pool of fewer than two entities. This implies
that during training, the negative sampler repeatedly selects from a minimal set, increasing the risk of
overfitting and limiting learning effectiveness. Additionally, around 20% of triples cannot be used at all

®Repository: https://github.com/ivandiliso/refactor-negative-sampler
*Documentation: https://ivandiliso.github.io/refactor-negative-sampler/
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for ontology-based sampling due to missing schema-level information (value 0 in the Figure 3). These
issues persist across datasets, with nearly 70% of DBpedia50 triples having a negative pool of 100 or
fewer entities, and over 30% in the other two datasets showing similar limitations.

This analysis provides an important insight into the practical applicability of ontology injection
and, more generally, the use of background knowledge in KGE workflows. It highlights the need for
thorough statistical examination of available data and underscores the importance of more complete
and semantically annotated knowledge bases. These findings also reinforce the need for adaptable
methods capable of handling incomplete ontology coverage while still leveraging available semantics.

5. Research Plan

The research activities outlined in this project are organized into distinct phases, each of which targets
a specific aspect of the overall framework. While these phases provide a logical breakdown of the work,
they are not intended to be carried out strictly sequentially. Many of them can be carried out in parallel
and developed iteratively or in overlap, depending on the needs of the project and the results that
emerge.

5.1. Phases of the Research

Phase 1: Study of Literature Comprehensive study and review of literature related to the PhD
research themes, including knowledge graph embedding methods, machine and deep learning on
multi-relational data, Description Logics, numerical and geometric interpretations of DL, embedding
spaces for both KGs and ontologies, and techniques for injecting background knowledge into embedding
models. The analysis also covers evaluation methodologies for link prediction and semantic consistency,
as well as the practical application of these topics within the railway engineering domain, including
implant rule specification and industrial-grade verification and validation.

Expected Result: A literature review summarizing the analyzed works and identifying the key
approaches, strengths, and weaknesses, as well as potential areas for innovation.

Phase 2: Data Gathering and Analysis Collection and analysis of SOTA datasets in the fields
of knowledge graphs and ontologies, with a focus on those that provide both instance-level (ABox)
and schema-level (TBox) views, formalized in OWL. This includes gathering, cleaning, and possibly
generating new datasets; extracting large-scale ontologies for experimentation (e.g., subsets of DBpedia
or YAGO); and conducting statistical analysis relevant to ontology injection, such as completeness and
structural properties. The phase also includes analysis of industrial formalizations used in railway
implants, including preprocessing and domain-specific knowledge extraction.

Expected Result: A curated collection of datasets and associated resources for subsequent experimen-
tation, along with detailed statistical reports to guide experimental design in later phases.

Phase 3: Ontology Injection Framework Definition and Development Formalization and
development of a structured framework for injecting ontological knowledge into KGE models. The
framework is divided into three main components: (1) Injection during negative sampling, (2) Injection
via loss constraints, and (3) Injection through the embedding space using DL-based representations.
Each component will be studied and implemented individually before being integrated into a coherent
system.

Expected Result: A robust and extensible ontology-injection framework ready for large-scale evalua-
tion in the next phase.

Phase 4: Evaluation Framework Definition and Development Design and development of a
comprehensive evaluation suite capable of assessing both the predictive performance of the model and
the quality of the semantic knowledge learned. This includes defining or reusing evaluation metrics



that align with common practices in the literature and domain-specific requirements.
Expected Results: A standardized and reusable evaluation framework for assessing the effectiveness
of ontology-aware KGE models in both general and domain-specific scenarios

Phase 5: Experiment Execution and Discussion Execution of extensive experiments to evaluate
the proposed models using the defined evaluation suite. The analysis will assess performance, robustness,
reliability, and applicability to mission-critical domains. Results will be compared with state-of-the-art
models, and ablation studies will be conducted to measure the specific impact of ontology injection.
This phase also includes evaluation of the model’s adaptability to different domains and datasets.
Expected Results: A comprehensive report detailing the experimental results and critical analysis,
offering insights for further improvements, refinement of the models, and potential directions for future
research.

Phase 6: Domain Specific Application in Railway Domain Adaptation and fine-tuning of the
general framework to meet industry-specific needs within the railway domain. This includes translating
general methods into specialized models that handle railway-specific data, semantics, and operational
constraints. The phase also involves on-site collaborations (e.g., internships) with local companies to
analyze and apply the proposed methods in real-world scenarios.

Expected Results: Deployment-ready, domain-tuned models and processes suitable for industrial
application, along with validation through field-specific use cases.

5.2. Research Timeline and Initial Contributions

PhD Year 1 (Current) The first year of this PhD project has primarily focused on Phases 1, 2, and 3.
Following a thorough literature review, the data gathering and analysis phase commenced, leading to
the collection and study of several state-of-the-art datasets. Preliminary results have been presented in
earlier sections [40]. In collaboration with Al2, the company co-funding this PhD, an analysis was also
carried out on industry-relevant technologies for formalizing domain knowledge, including RailML *
(both the markup language and its associated schema ontology °), the ERA Ontology °, and the ERA
Knowledge Graph 7. Current efforts are focused on anonymizing and transforming these resources into
Semantic Web standards to facilitate broader reuse. Regarding Phase 3, initial work concentrated on
ontology injection during the negative sampling process, with implementation and evaluation outlined
previously. In parallel, Phase 4 was initiated through the design of an evaluation framework, including
the development of new evaluation metrics and early implementation using PyKEEN, PyTorch, and
Torch Geometric. The incremental development of both the ontology injection framework and the
evaluation suite will continue through the remainder of the first year.

PhD Year 2 Building on the foundational datasets and preliminary framework developed during the
first year, the second year of the project will focus on further developing ontology injection mechanisms
directly within KGE models. In Q1-Q2, Phase 3 will continue with an emphasis on ontology injection
through geometric embedding spaces grounded in Description Logics. This phase will involve the
formalization of new techniques, the design of model architectures, and the definition of appropriate
training strategies. The finalization of the evaluation suite (Phase 4) is also planned during this period.
In Q3-Q4, Phase 5 will be initiated with large-scale experimental evaluations of the proposed models.
These evaluations will be carried out using the developed framework and guided by the finalized
semantic and performance metrics. Based on the evaluation results, an iterative refinement process
will be undertaken to improve model robustness, enhance semantic alignment, and address identified
limitations—ensuring the scalability and effectiveness of the proposed approach.

*https://www.railml.org/en/

*https://ontology.railml.org
Shttps://data-interop.era.europa.eu/era-vocabulary/
"https://www.era.europa.eu/domains/registers/era-knowlege-graph_en
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PhD Year 3 Assuming successful completion of the previous phases, the third year of the project
will focus on Phase 6: adapting and applying the proposed framework to domain-specific requirements
within the railway sector. This will require iterative refinement of both Phase 3 (model definition)
and Phase 5 (experimental evaluation) to align the ontology injection methodology with the specific
constraints, formalisms, and standards of the target industrial domain. This phase will also include an
internship with an industry partner to acquire in-depth domain knowledge and practical experience.
Close collaboration with domain experts will be essential to ensure the correctness, formal compliance,
and applicability of the proposed models in a mission-critical environment. In parallel, previously
conducted experiments will be re-evaluated and extended, with the goal of delivering a mature, validated,
and industry-ready solution.

6. Conclusion

This PhD project takes a structured and comprehensive approach to improving knowledge graph
embedding models by integrating ontological knowledge. In response to the current limitations of
semantic representation, the research will focus on developing a general, domain-agnostic framework
that supports ontology injection at various stages of the KGE pipeline, including negative sampling,
loss constraints, and embedding space alignments. The proposed work aims to enrich existing models
with ontological semantics and emphasizes practical usability through standardized implementations,
reusable components, and robust evaluation tools, thereby aligning with software engineering best
practices.

During the first year, the project laid the foundation through an in-depth literature review and dataset
analysis, as well as the initial development of the ontology injection framework through negative
sampling. These contributions have already enabled a deeper analysis, exposing critical challenges such
as data incompleteness and the absence of standardized tools in the literature.

Looking ahead, the next phases will extend the framework to support ontology injection through
description logic embedding spaces and semantic loss constraints, followed by large-scale evaluation
and domain-specific adaptations. The ultimate goal is to deliver a unified, flexible methodology that
can support both academic research and industrial applications. By bridging the gap between symbolic
reasoning and statistical learning, this research will advance the field of knowledge representation and
enable more semantically grounded machine learning systems.
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