
Datalog-based Reasoning for Banking Supervision:
is This All a Fantasy?⋆

Luigi Bellomarini
1
, Marta Bernardini

1
, Livia Blasi

1,2
, Costanza Catalano

1
, Rosario Laurendi

1
,

Andrea Gentili
1
, Davide Magnanimi

1,3
, Marco Mastrogirolamo

1
and Emanuel Sallinger

2

1Banca d’Italia, Italy
2TU Wien, Austria
3Politecnico di Milano, Italy

Abstract
Banking supervision is a pillar of economic stability, and rule-based AI systems promise to enhance its effectiveness

through scalability and explainability. In this paper, we present a concrete case study from the Central Bank

of Italy, where we developed and deployed KG4VIG, a rule-based framework built on the Datalog
±

family of

languages and Knowledge Graphs. Focusing on the task of computing shareholding relationships in a financial

network, we show how our declarative reasoning approach overcomes the limitations of matrix-based methods

and provides an explainable and scalable solution.

Keywords
Knowledge graphs, reasoning, Datalog, Integrated Ownership, banking supervision.

1. Introduction and Contribution

Banking supervision is one of the most critical aspects for ensuring the continued functioning of our

economic systems and society as a whole—as demonstrated by the devastating effects of some of the

largest bank failures in history. The promises of information technology in general, and symbolic,

rule-based AI systems in particular, to address these challenges are high. The main question we are

going to answer in this paper is “is this all a fantasy?” and which points translate into reality, shown

through a concrete approach in real-world use in the central bank space.

In an influential paper, Ehrlinger and Wöß [1] review many definitions of Knowledge Graphs (KG) and

propose a formulation that distills a promising approach to put symbolic rule-based AI into action: “[a
KG] acquires and integrates information into an ontology and applies a reasoner to derive new knowledge”.

Besides data integration and wrangling, ontologies are an essential ingredient: they shape the business

meaning of the KG and enable reasoning, i.e., reading, analyzing and inferring the business concepts.

Still, how should we model ontologies? A prominent approach comes from the logic, database, and

Knowledge Representation and Reasoning (KRR) communities, which have devoted increasing effort to

express ontologies as rules in the Datalog
±

family [2] of languages, or “fragments”. Datalog
±

extends

the applicability of the Datalog language of databases [3] to reasoning tasks by supporting the features

needed in this space, such as a full interplay between existential quantification and recursion. In the

academic discourse, we see—and contribute to the study of—a proliferation of fragments, which aim at

striking a balance between expressive power and computational complexity of reasoning, with different

strategies incorporated into the execution engines. In this line of research, within a collaboration among

the Central Bank of Italy, the University of Oxford, and TU Wien, namely, the KG Labs, we developed

RuleML+RR’25: Companion Proceedings of the 9th International Joint Conference on Rules and Reasoning, September 22–24, 2025,
Istanbul, Turkiye.
⋆

The views and opinions expressed in this paper are those of the authors and do not necessarily reflect the official policy or

position of Banca d’Italia.

$ luigi.bellomarini@bancaditalia.it (L. Bellomarini); marta.bernardini@bancaditalia.it (M. Bernardini);

livia.blasi@bancaditalia.it (L. Blasi); costanza.catalano@bancaditalia.it (C. Catalano); rosario.laurendi@bancaditalia.it

(R. Laurendi); andrea.gentili@bancaditalia.it (A. Gentili); davide.magnanimi@bancaditalia.it (D. Magnanimi);

marco.mastrogirolamo@bancaditalia.it (M. Mastrogirolamo); sallinger@dbai.tuwien.ac.at (E. Sallinger)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:luigi.bellomarini@bancaditalia.it
mailto:marta.bernardini@bancaditalia.it
mailto:livia.blasi@bancaditalia.it
mailto:costanza.catalano@bancaditalia.it
mailto:rosario.laurendi@bancaditalia.it
mailto:andrea.gentili@bancaditalia.it
mailto:davide.magnanimi@bancaditalia.it
mailto:marco.mastrogirolamo@bancaditalia.it
mailto:sallinger@dbai.tuwien.ac.at
https://creativecommons.org/licenses/by/4.0/deed.en


Figure 1: An ownership graph. Purple edges and weights refer to the IO in each SCC. When no double color is
shown, the IO coincides with the edge weight, as for (𝑏, 𝑐).

Vadalog [4], a Datalog-based reasoner based on Warded Datalog± [5], and gradually extended its

ecosystem with features of practical utility such as algebraic operations and monotonic aggregations [6],

conditions and equality-generating dependencies [7], and parallel scalable execution modes [8].

From the academic point of view, here we wonder: is this Datalog- rule-based ecosystem, stemming

from decades of database and AI research, really actionable for real-world problems?

Contribution. In this paper, we demonstrate through an industrial case in the financial domain that

rule-based reasoning with Vadalog and KGs can effectively address real-world challenges, offering

scalable and explainable solutions. We present a perspective on Kg4Vig, a framework we developed

and now in production at the Central Bank of Italy to support banking supervision.

Kg4Vig is a banking supervision platform with numerous features. In this paper, we focus on one

specific task: providing analysts with the Integrated Ownership (IO) of a bank within a financial KG,

where nodes represent financial entities (be they banks, companies, intermediaries, or people), and

edges are shareholding relationships between them. The IO of an entity 𝑥 over 𝑦 is defined as the total

ownership—both direct and indirect—that 𝑥 holds on 𝑦, and serves as a measure of the influence of

an entity over another, by quantifying the cumulative ownership involvement between them. While a

matrix-based formulation of this problem exists, it suffers from computational limitations. We propose

a declarative rule-based solution, formalized in Vadalog and implemented within Kg4Vig. We argue

for the scalability and explainability of our technique for IO, and underscore the key role of tailor-made

UI/UX components for successful rule-based applications.

Overview. In Section 2 we present the reasoning setting. In Section 3, we focus on the implementation

and UI aspects. Section 4 concludes the paper.

2. The Industrial Case: Rule-based Integrated Ownership

Let 𝐺 = (𝑉,𝐸, 𝜔) be a graph that models the property relationships between financial entities—or

companies hereinafter—where 𝑉 is the set of nodes representing companies, 𝐸 ⊂ 𝑉 × 𝑉 is the set of

directed edges for ownership relationships, and 𝜔 : 𝐸 → [0, 1] is a weight function representing the

share magnitude; an edge 𝑒 = (𝑢, 𝑣) of weight 𝜔(𝑒) indicates that company 𝑢 owns 𝜔(𝑒)% of shares of

𝑣. An example of such property graph is in Figure 1 (only black edges and weights). The definition of

IO relies on the concept of Baldone walk [9, 10]; a Baldone walk from A node 𝑢 to A node 𝑣 is a walk

in which the starting node 𝑢 may only appear as the first or (if 𝑢 = 𝑣) the last node in the walk. The

weight of a Baldone walk is the product of the weights of its edges. In Figure 1, the walk {𝑎, 𝑏, 𝑐, 𝑏, 𝑐, 𝑏}
is a Baldone walk from 𝑎 to 𝑏 of weight 0.3× 1× 0.7× 1× 0.7 = 0.147. Instead, the walk {𝑏, 𝑐, 𝑏, 𝑑}
is not a Baldone walk. As shown in the example, Baldone walks may contain cycles. The integrated

ownership ℐ𝑢𝑣 between 𝑢 and 𝑣 is defined as the sum of the weights of all the Baldone walks from 𝑢 to

𝑣. By setting 𝑊 the adjacency matrix of 𝐺, ℐ = {ℐ𝑢𝑣}𝑢,𝑣∈𝑉 and 𝐼 the identity matrix, Glattfelder [11]

shows that

ℐ = (diag((𝐼 −𝑊 )−1))−1(𝐼 −𝑊 )−1𝑊 . (1)



Unfortunately, applying Eq.(1) involves computing the inverse of the matrix (𝐼 −𝑊 ), where the best

state-of-the-art algorithm doing so has computational complexity of 𝑂(𝑛2.372) [12], a computationally

infeasible task in large real-world graphs like ours, having ∼ 182M nodes.

In Kg4Vig, we solve the IO problem with a graph factorization approach: first, we compute the IO

between all pairs of nodes within the same strongly connected component (SCC) with Eq. (1). Then,

with the following Vadalog rules, we merge the SCC-local IOs and compute the IO between nodes in

different SCCs.

Edge(𝑥, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤_𝑋𝑌,𝑤_𝑌 𝑌 ), 𝑠𝑐𝑐𝑋 = 𝑠𝑐𝑐𝑌,

→ Own(𝑥, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤_𝑋𝑌,𝑤_𝑌 𝑌 ) (2)

Edge(𝑥, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤_𝑋𝑌,𝑤_𝑌 𝑌 ), 𝑠𝑐𝑐_𝑋 ̸= 𝑠𝑐𝑐_𝑌,

𝑤 = 𝑠𝑢𝑚(𝑤_𝑋𝑌/(1.0− 𝑤_𝑌 𝑌 )) → Own(𝑥, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤,𝑤_𝑌 𝑌 ) (3)

Edge(𝑥, 𝑧, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑍,𝑤_𝑋𝑍,𝑤_𝑍𝑍), Edge(𝑧, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤_𝑍𝑌,𝑤_𝑌 𝑌 ),

𝑠𝑐𝑐_𝑋 = 𝑠𝑐𝑐_𝑍, 𝑠𝑐𝑐_𝑍 ̸= 𝑠𝑐𝑐_𝑌, 𝑠𝑐𝑐_𝑋 ̸= 𝑠𝑐𝑐_𝑌,

𝑤 = 𝑠𝑢𝑚(𝑤_𝑋𝑍 * 𝑤_𝑍𝑌/(1.0− 𝑤_𝑌 𝑌 )) → Own(𝑥, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤,𝑤_𝑌 𝑌 ) (4)

Own(𝑥, 𝑧, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑍,𝑤_𝑋𝑍,𝑤_𝑍𝑍), Edge(𝑧, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤_𝑍𝑌,𝑤_𝑌 𝑌 ),

𝑠𝑐𝑐_𝑋 ̸= 𝑠𝑐𝑐_𝑌, 𝑠𝑐𝑐_𝑋 ̸= 𝑠𝑐𝑐_𝑍, 𝑠𝑐𝑐_𝑌 = 𝑠𝑐𝑐_𝑍,

𝑤 = 𝑠𝑢𝑚(𝑤_𝑋𝑍 * 𝑤_𝑍𝑌 ) → OwnD(𝑥, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤,𝑤_𝑌 𝑌 ) (5)

OwnD(𝑥, 𝑧, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑍,𝑤_𝑋𝑍,𝑤_𝑍𝑍), Edge(𝑧, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤_𝑍𝑌,𝑤_𝑌 𝑌 ),

𝑠𝑐𝑐_𝑋 ̸= 𝑠𝑐𝑐_𝑌 ̸= 𝑠𝑐𝑐_𝑍

𝑤 = 𝑠𝑢𝑚(𝑤_𝑋𝑍 * 𝑤_𝑍𝑌/(1.0− 𝑤_𝑌 𝑌 )) → Own(𝑥, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤,𝑤_𝑌 𝑌 ) (6)

Own(𝑥, 𝑧, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑍,𝑤_𝑋𝑍,𝑤_𝑍𝑍), Edge(𝑧, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤_𝑍𝑌,𝑤_𝑌 𝑌 ),

𝑠𝑐𝑐_𝑋 ̸= 𝑠𝑐𝑐_𝑌 ̸= 𝑠𝑐𝑐_𝑍,

𝑤 = 𝑠𝑢𝑚(𝑤_𝑋𝑍 * 𝑤_𝑍𝑌/(1.0− 𝑤_𝑌 𝑌 )) → Own(𝑥, 𝑦, 𝑠𝑐𝑐_𝑋, 𝑠𝑐𝑐_𝑌,𝑤,𝑤_𝑌 𝑌 ) (7)

The Edge predicate captures the identities of 𝑥 and 𝑦, the SCC they belong to (𝑠𝑐𝑐_𝑋 and 𝑠𝑐𝑐_𝑌 ), the

weight 𝑤_𝑋𝑌 , and the (SCC-locally computed) integrated ownership of 𝑦 over itself 𝑤_𝑌 𝑌 = ℐ𝑦𝑦 . If

𝑥 and 𝑦 belong to the same SCC, then 𝑤_𝑋𝑌 is set equal to ℐ𝑥𝑦 , as by Eq. (1); if they belong to different

SCCs, then 𝑤_𝑌 𝑌 = 𝜔(𝑥, 𝑦), i.e., the ownership shares of 𝑥 in 𝑦, if there are any. This is equivalent

to adding edges between any pair of nodes (𝑥, 𝑦) belonging to the same SCC with weight ℐ𝑥𝑦 (see

Figure 1, black and purple edges and weights). The contributions are later summed to get the integrated

ownerships between every two companies.

When 𝑥 and 𝑦 belong to the same SCC (Rule 2 - base case) the resulting 𝑂𝑤𝑛’s 𝑤 simply equals

𝑤_𝑋𝑌 itself. When 𝑥 and 𝑦 belong to different SCCs and are connected by an edge (Rule 3 - base

case), the resulting 𝑤 of Own is computed by the sum of all 𝑤_𝑋𝑌 normalized by (1− 𝑤_𝑌 𝑌 ). This

normalization factor takes into account the sum of the weights of all walks from 𝑦 to 𝑦 itself in the

graph, which in matrix terms is equal to

∑︀+∞
𝑖=0 𝑊 𝑖

𝑦𝑦 = (𝐼 − 𝑊 )−1
𝑦𝑦 ; these walks are the ones that,

concatenated with the edge (𝑥, 𝑦), form the Baldone walks from 𝑥 to 𝑦. Indeed, by massaging Eq.(1), it

can be shown that 1/(1− 𝑤_𝑌 𝑌 ) = 1/(1− ℐ𝑦𝑦) = (𝐼 −𝑊 )−1
𝑦𝑦 . In Figure 1 this is the case for 𝑥 = 𝑐

and 𝑦 = 𝑑, which produces the contribution 𝑤 = 0.1/(1− 0.4) = 0.16̄ to the computation of ℐ𝑐𝑑.

The last four rules are recursive cases of the first two. Rule 4 states that if 𝑥 and 𝑧 belong to the

same SCC (and hence there is an edge between the two of weight 𝑤_𝑋𝑍 = ℐ𝑥𝑧) and there is an edge

from 𝑧 to 𝑦 where 𝑦 belongs to a different SCC then the term 𝑤 for Own between 𝑥 and 𝑦 is the sum of

𝑤_𝑋𝑍 * 𝑤_𝑍𝑌 normalized by (1− 𝑤_𝑌 𝑌 ). In Figure 1 this is the case for 𝑥 = 𝑐, 𝑧 = 𝑏 and 𝑦 = 𝑑,

producing the contribution 𝑤 = (0.7× 0.5)/(1− 0.4) = 0.58̄ to the computation of ℐ𝑐𝑑. Summing up

the two contributions coming from Rule 3 and Rule 4 (as together they consider all the Baldone walks

from 𝑐 to 𝑑 in the graph), we get that ℐ𝑐𝑑 = 0.16̄ + 0.58̄ = 0.75.

In Rule 5, a new predicate appears, OwnD, which is in turn used in Rule 6. Rule 5 tackles the case

where an ownership path is computed between 𝑥 and 𝑧 belonging to different SCCs, and then 𝑧 is



Figure 2: An IO-centered view on the architecture of Kg4Vig: from data ingestion to web visualization.

connected to 𝑦 in the same SCC; the term 𝑤 for OwnD between 𝑥 and 𝑦 is the sum of 𝑤_𝑋𝑍 * 𝑤_𝑍𝑌 ;

this time it is not normalized, as by definition 𝑤_𝑍𝑌 is already equal to ℐ𝑧𝑦 . In Figure 1 this is the case

for 𝑥 = 𝑎, 𝑧 = 𝑏 and 𝑦 = 𝑐, producing ℐ𝑎𝑐 = ℐ𝑎𝑏 × 1 = 1× 1 = 1. Since in our setting every pair of

nodes is connected in a SCC, with Rule 5 we already cover all the nodes 𝑦 belonging to the same SCC

of 𝑧.

Therefore, the next step of the recursion must necessarily leave such SCC as otherwise it would

re-visit nodes; this is the role of Rule 6. In it, all three nodes 𝑥, 𝑦, 𝑧 must belong to different SCCs,

with OwnD between 𝑥 and 𝑧 computed by Rule 5 and an edge from 𝑧 to 𝑦; then the term 𝑤 for Own
between 𝑥 and 𝑦 is the sum of 𝑤_𝑋𝑍 *𝑤_𝑍𝑌 normalized by (1−𝑤_𝑌 𝑌 ). In Figure 1, this is the case

for 𝑥 = 𝑎, 𝑧 = 𝑐 and 𝑦 = 𝑑, which produces 𝑤 = ℐ𝑎𝑐 × 0.1/(1 − 0.4) = 1 × 0.1/0.6 = 0.16̄ to the

computation of ℐ𝑎𝑑.

Finally, Rule 7 is as Rule 6 but with the predicate Own in input, covering the last case where all

the three nodes 𝑥, 𝑧, 𝑦 belong to different SCCs. In Figure 1 this is the case for 𝑥 = 𝑎, 𝑧 = 𝑏 and

𝑦 = 𝑑, producing the contribution 𝑤 = ℐ𝑎𝑏 × 0.5/(1− 0.4) = 1× 0.5/0.6 = 0.83̄ to the computation

of ℐ𝑎𝑑, that together with what computed by Rule 6 is equal to ℐ𝑎𝑑 = 0.16̄ + 0.83̄ = 1. Notice that

ℐ𝑎𝑏 = 0.3/(1− 0.7) = 1 is computed by Rule 3 in the base case.

Correctness and scalability. Our observation is that the IO between two nodes that belong to the

same SCC 𝒞 involves only walks in 𝒞, i.e., the application of Eq. (1) can be restricted to the adjacency

matrix 𝑊𝒞 of 𝒞. For example, in Figure 1, we have three SCCs: {𝑎}, {𝑏, 𝑐} and {𝑑, 𝑒, 𝑓}; the application

of Eq. (1) to 𝒞 = {𝑏, 𝑐} produces ℐ𝑏𝑏 = 0.7, ℐ𝑏𝑐 = 1, ℐ𝑐𝑏 = 0.7 and ℐ𝑐𝑐 = 0.7 using 𝑊𝒞 = [0, 1; 0.7, 0].
Our KG comprises ∼ 64k SCCs, whose largest component has ∼ 1k nodes, while all the others

are under 50 nodes, making Eq.(1) efficiently computable in each SCC. Moreover, such computations

are parallelizable among the SCCs as the calculations are independent of each other. The whole IO

computation can be parallelized among weakly connected components of the graph, as they do not

share any Baldone walk.

3. Implementation and Visualization

While this paper only focuses on a specific application perspective, we remark that the Kg4Vig system

is fully engineered and currently adopted in production in the Central Bank of Italy.

Implementation. An IO-centered view on its architecture is shown in Figure 2. A data wrangling
component builds the KG from the enterprise data stores and materializes it into a Neo4J cluster.

In particular, they perform specific step in the data transformation pipeline that goes from improving

the data quality and consistency (data cleaning) and harmonizing heterogenous data schemas into



a unified global one (schema integration), up to the construction of a unified graph view on domain

entities and their relationships by integrating data from different data sources (entity resolution and

data fusion). The database is deployed across three geographically distributed nodes to ensure load

balancing, end-users’ query performances, and fault tolerance.

Vadalog is used for data wrangling as well as the execution of business rules, like those of IO

(Section 2). The rules are compiled into an abstract higher-level algebraic representation, namely,

an execution plan, which is finally translated into a set of Spark Jobs. An underlying Apache Spark
Cluster (16 cores, 32 threads, 256 GB of RAM each) executes these jobs, and the results are stored back

into the KG. A dedicated web app provides access to the users. The data wrangling phase, as well as

performance-critical tasks like IO, require the native use of PySpark and dedicated graph libraries such

as GraphFrames, which provide primitives for distributed data processing within a Spark ecosystem.

To compute IO, all the SCCs are preliminarily identified using built-in methods from GraphFrames and

then, they are transformed into a matrix representation, where Eq.(1) is solved in Numpy. The illustrated

Vadalog program is then applied on the results from this phase. The reasoning engine retrieves and

parses the ontology (i.e., set of rules) from its internal repository, applies a series of logic optimizations,

and construct an access plan that maps each rule to a corresponding data transformation operation.

This access plan is eventually compiled into a query plan tailored for the target execution environment.

Within our framework, the reference execution environment is represented by the Apache Spark cluster;

hence, the compiled query plan leverages Spark primitives to distribute the data processing workload

across it. Finally, the computed IO from both stages are persisted back into the Neo4J graph database,

thereby augmenting the KG with new inferred knowledge. These results are accessible to end-users

through a tailored web application that facilitates the user interaction with the KG.

Notably, all the reasoning and Python computations are executed in parallel across SCCs, maximizing

the use of cluster resources. The overall computational time for the IO is ∼ 3 hours; notice that the use

of Eq.(1) for the whole graph would make the machine to run out of memory space before termination.

Visualization. As rule-based developers and adopters, a tempting perspective lies in offering general-

purpose solutions, with generic graphical metaphors for nodes and edges cooperating with rule-based
reasoning widgets [13]. Yet, we learnt that a production-ready rule-based system calls for a tailor-made

user interface, as domain experts wish for applications that can speak their business language and cater

specifically to their business scenarios, while offering scalability and explainability.

Scalable logic fragments like Warded Datalog
±

, supported by efficient execution engines, offer

an extremely promising avenue. Thanks to the combination of KGs and rule-based reasoning, high

interpretability of results can also be achieved. UIs can be hinged on the visual metaphor of extensional
vs intensional components: the former shows the business data in the form of a property graph, carefully

rendered with graph visualization libraries, the latter highlights the knowledge derived from the

reasoning process. For example (Figure 2), the derived edges denoting IO and other business-relevant

amounts, are shown in dashed line, while the extensional edges for the same measures (i.e., in the figure,

the control edges, denoted in orange in both cases) are shown in solid line. The informative use of line

styles, added to an accessible color palette to denote the different measures, as well as the careful use of

shapes and symbols, facilitate the readability of the information shown by the application.

User interaction is also crucial: our approach consists in an incremental expansion of the currently

visualized graph, which follows and mimics the rule application. The involving feeling of driving

the analysis comes as a consequence. In the IO case, explainability is supported by interactive node

exploration. The analyst may request a visualization of entities that directly or indirectly own the

subject, with each step of the calculation made explicit as computed by Vadalog, trace ownership chains,

and find the ultimately controlling bank. Side-tabs provide legends on colors and symbols, as well as

information on the datasets of provenance and computed IO, reminding the user the computational

principles underneath.



4. Conclusion

We presented a real-world application for the Central Bank of Italy, demonstrating the practical use of

rule-based technology built on a state-of-the-art Datalog-based language and system. The successful

deployment of such tools proves that their use is not a fantasy. While the gap between theory and

practice, especially in the realm of logic programming, often seems wide, we showed that careful

design choices and concrete experience in industrial contexts can bridge it effectively. The step-by-step

inference mechanism of Datalog is already inherently explainable, but tight integrations with LLMs are

starting to show the possibility to develop GraphRAG [14] approaches to build textual explanations of

the reasoning conclusions [15], a goal for our future work.

Acknowledgments

This work was partially supported by the Vienna Science and Technology Fund (WWTF)

[10.47379/VRG18013, 10.47379/NXT22018, 10.47379/ICT2201] and the Austrian Science Fund

[10.55776/COE12].

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] L. Ehrlinger, W. Wöß, Towards a definition of knowledge graphs, in: SEMANTiCS, 2016.

[2] A. Calì, G. Gottlob, T. Lukasiewicz, B. Marnette, A. Pieris, Datalog
±

: A family of logical knowledge

representation and query languages for new applications, in: LICS, 2010.

[3] S. Abiteboul, R. Hull, V. Vianu, Foundations of databases, volume 8, 1995.

[4] L. Bellomarini, D. Benedetto, G. Gottlob, E. Sallinger, Vadalog: A modern architecture for automated

reasoning with large knowledge graphs, Inf. Syst. 105 (2022) 101528.

[5] G. Gottlob, A. Pieris, Beyond SPARQL under OWL 2 QL entailment regime: Rules to the rescue,

in: IJCAI, AAAI Press, 2015.

[6] A. Shkapsky, M. Yang, C. Zaniolo, Optimizing recursive queries with monotonic aggregates in

deals, in: ICDE, IEEE Computer Society, 2015, pp. 867–878.

[7] L. Bellomarini, D. Benedetto, M. Brandetti, E. Sallinger, Exploiting the power of equality-generating

dependencies in ontological reasoning, Proc. VLDB Endow. 15 (2022) 3976–3988.

[8] L. Bellomarini, D. Benedetto, M. Brandetti, E. Sallinger, A. Vlad, The vadalog parallel system:

Distributed reasoning with Datalog+/-, Proc. VLDB Endow. 17 (2024) 4614–4626.

[9] S. Baldone, F. Brioschi, S. Paleari, Ownership measures among firms connected by cross-

shareholdings and a further analogy with input-output theory, in: JAFEE, 1998.

[10] D. Magnanimi, M. Iezzi, Ownership graphs and reasoning in corporate economics, in: EDBT/ICDT

Workshops, 2022.

[11] J. Glattfelder, Owership networks and corporate contol: mapping economic power in a globalized

world, Phd thesis, ETH Zurich, 2010.

[12] J. Alman, R. Duan, V. V. Williams, Y. Xu, Z. Xu, R. Zhou, More asymmetry yields faster matrix

multiplication, in: SODA, 2025, pp. 2005–2039.

[13] L. Bellomarini, M. Benedetti, A. Gentili, D. Magnanimi, E. Sallinger, KG-roar: Interactive Datalog-

based reasoning on virtual knowledge graphs, VLDB 16 (2023) 4014–4017.

[14] Y. Hu, Z. Lei, Z. Zhang, B. Pan, C. Ling, L. Zhao, GRAG: graph retrieval-augmented generation, in:

NAACL (Findings), ACL, 2025, pp. 4145–4157.

[15] A. Colombo, T. Baldazzi, L. Bellomarini, E. Sallinger, S. Ceri, Template-based explainable inference

over high-stakes financial knowledge graphs, in: EDBT, 2025, pp. 503–515.


	1 Introduction and Contribution
	2 The Industrial Case: Rule-based Integrated Ownership
	3 Implementation and Visualization
	4 Conclusion

