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Abstract

This work presents a novel hybrid methodology combining Finite Element Method thermal simulations
and Physics-Informed Neural Networks for improved thermal property and resistance prediction in
electronic systems. By directly encoding physical laws into the learning procedure, the methodology facilitates
accurate real-time inference of internal thermal parameters based on sparse external measurements.
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1. Introduction

As electronic systems continue to shrink and increase in functional density, managing heat becomes a critical
challenge, especially in embedded and power electronics. Conventional thermal calibration approaches,
including standardized datasheet values or finite element simulations, often rely heavily on expert intu-
ition and trial-and-error procedures, making them time-consuming and dependent on human experience
rather than offering precise, automated solutions. To address these limitations, this paper introduces a hybrid
calibration approach using Physics-Informed Neural Networks, which embed thermal physics directly
into the learning process. By automating simulation workflows through PyAnsys and training lightweight,
explainable models suitable for deployment, the proposed method enables accurate real-time prediction of
internal thermal properties from sparse external measurements—achieving a balance between physical fidelity
and computational efficiency.

Despite the increasing academic interest in Physics-Informed Neural Networks [1] for thermal model-
ing, their practical implementation in real-world calibration scenarios, especially within systems, remains
constrained. These limitations primarily stem from significant computational overhead and the scarcity of
publicly available datasets suitable for such applications.

This paper addresses these limitations by introducing a lightweight, explainable Physics-Informed Neural
Network architecture specifically engineered for integration into a real-time calibration loop. The proposed
architecture is trained using a novel, high-throughput Finite Element Method dataset, generated through
PyAnsys. In contrast to prior research, such as the work by Du and Lu [2], which focuses on complex, chip-to-
system-level applications utilizing architectures like DeepONet or ThermPhysics-Informed Neural Network, the
current methodology is specifically tailored for MOSFET calibration on multilayer Printed Circuit Boards
(PCBs). It accurately predicts crucial thermal resistance parameters, namely Ry(j-a) (junction-to-ambient) and
Rinj-b) (junction-to-board) which indicate how effectively heat is transferred from the electronic component’s
junction to its surrounding environment and to the PCB, respectively. A key innovation of the current approach
lies in the direct coupling of Physics-Informed Neural Network training with Finite Element Method
simulation workflows. This integration effectively accounts for structural and material non-uniformities,
enhancing the model’s fidelity. Consequently, the proposed Physics-Informed Neural Network framework is
readily deployable in real-time contexts, thereby bridging the existing gap between high-fidelity simulation
and practical application in thermal management.
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2. Fundamentals of MOSFETs, PCBs, and Thermal Resistance

A Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) shown in [Figure 1] is a three-terminal
device—gate, drain, and source—widely used in both digital and analog circuits due to its high efficiency,
fast switching speed, and low power consumption. It functions by applying an electric field at the gate to
control the current between the drain and source, with a thin silicon dioxide (SiO5) layer ensuring high input
impedance. In the automotive industry, MOSFETs serve in various roles including energy control for hybrid
and electric vehicles, motor control in electric power steering (EPS) and HVAC systems, battery management
systems (BMS), switching in DC-DC converters and inverters, and power regulation for LED lighting and
infotainment systems.

Figure 1: Example of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor)

These devices are typically mounted on Printed Circuit Boards (PCBs) as illustrated in [Figure 2], which are
composed of insulating materials such as FR4 fiberglass and have copper traces for electrical connectivity. PCBs
provide both mechanical and electrical support for components and come in single-layer, double-layer, or
multi-layer configurations, making them essential in modern electronics due to their reliability, compactness,
and ease of mass production.

Figure 2: Example of a PCB (Printed Circuit Boards)

Thermal resistance, a critical parameter for MOSFET operation, is typically provided in datasheets
as Ryj(j—q), representing the junction-to-ambient thermal resistance. This value is influenced by PCB
parameters such as material, copper thickness, and layout. Derived from Fourier’s Law and an analogous to
Ohm’s Law, thermal resistance is expressed as:

L

Rip = A (1)

where L is the material thickness, k is the thermal conductivity, and A is the heat conduction area.

The specific thermal resistance from junction to ambient is given by:

T, — T,
Rin(j—a) = % (2)
while the junction-to-board resistance is:
T, — T,
Rinii—v) = JT 3)

Here, T} is the junction temperature, Ty, is the ambient temperature, 7} is the board temperature, and P is
the power dissipated. By optimizing copper area, thermal via placement, and PCB design, engineers can
significantly reduce R;,(;_s), improving heat dissipation and device reliability.



Despite the mathematical similarity between thermal and electrical resistance, there are practical differences.
For example, thermal conductivity spans only about three orders of magnitude, while electrical conductivity
varies by over twenty. Furthermore, complex phenomena such as spreading resistance and multidimensional
heat flow make analytical solutions less accurate. Therefore, simulation tools like Finite Element Analysis
(FEA) are often used to model thermal behavior and optimize designs.

Datasheets often present multiple R;j,(;_,) shown in [Figure 3] values depending on test setups—such as
JEDEC-standard footprint [3] or a 1-inch square copper pad—and include package outlines, which are
also available in CAD formats for use in mechanical and thermal modeling. These resources aid in precise
component placement, thermal analysis, and system reliability optimization.
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Figure 3: Example of lateral cross section of TO-220 package

Though the mathematical analogy between thermal and electrical resistance is sound, practical differences
render this analogy of limited utility. As noted by Philips researcher Clemens J. M. Lasance in a 2008 review
paper [4], electrical conductivity ranges over roughly 20 orders of magnitude between insulators and conductors,
while thermal conductivity only covers a range of roughly three orders. Because of this, the behavior of
heat is much more complicated and less straightforward to predict than the flow of electrical current. One
complication in thermal analysis is the phenomenon of spreading resistance—an effect that cannot be accounted
for in one-dimensional analytical models. Real heat propagation is affected by material inhomogeneity, copper
traces, and PCB layout, resulting in multidimensional and nonlinear heat flow that resists simple calculation,
making the problem a good candidate for machine learning solutions.

3. ANSYS and PyAnsys Simulation

ANSYS [5], a comprehensive engineering simulation software, employs the Finite Element Method to
model, simulate, and analyze complex physics-based phenomena across diverse domains, including structural
mechanics, computational fluid dynamics, heat transfer, and electromagnetics. This capability facilitates
virtual prototyping, design optimization, and cost-efficient analysis by enabling engineers to predict
system behavior under various loads and environmental conditions without the need for physical prototypes.
The typical simulation workflow within ANSYS encompasses several critical stages: initial geometry creation
or import from CAD software, precise material property assignment, discretization of the geometry into
a finite element mesh, application of appropriate boundary conditions and external loads, execution of the
solver to compute system responses, and finally, comprehensive post-processing for result interpretation and
visualization. This iterative process often concludes with validation against experimental or theoretical data to
refine and optimize designs.

Complementing ANSYS’s robust graphical interface, PyAnsys [6], an open-source Python library, signifi-
cantly extends these capabilities by enabling scripting, automation, and seamless integration of simulations.
PyAnsys provides direct programmatic access to ANSYS Parametric Design Language (APDL) functionali-
ties within a Python environment, allowing for granular control over simulation procedures such as mesh
generation, boundary condition definition, and post-processing. This integration streamlines multi-step
tasks, facilitates efficient parametric studies, enables large-scale batch simulations, and supports the
implementation of advanced optimization procedures. Furthermore, PyAnsys enhances data processing and
reporting through Python’s extensive data libraries and fosters strong integration with CAD packages, cloud-
based computing resources, and ML frameworks, optimizing simulation-driven product development
and supporting large-scale, cloud-enabled workflows for both industrial and academic applications.



4. Physics-Informed Machine Learning

Our proposed approach, Physics-Informed Machine Learning (PIML) represents an essential paradigm
shift in scientific simulation, overcoming the shortcomings of standard machine learning (ML) algorithms
and classical numerical methods. PIML combines the predictive capabilities of machine learning with
the strict structure of physical laws, usually by placing governing equations such as partial differential
equations (PDEs) directly within the learning procedure. This hybrid framework provides notable benefits
in scientific applications where data can be limited, noisy, or costly to obtain, facilitating data-efficient and
physically consistent models with the ability to generalize well beyond observed data. The rationale for
PIML is driven by the computational expense, uncertainty quantification challenges, and inability to
incorporate incomplete or noisy data of traditional numerical simulations [7, 8, 9].

At the heart of PIML are Physics-Informed Neural Networks, neural Networks that are trained to minimize
both observed data and the underlying physical laws represented as PDEs. This is done by introducing PDE
residuals in the loss function of the network along with a data-driven term. Physics-Informed Neural Networks
have multiple advantages, such as mesh-free implementation, strong handling of noisy and/or incomplete
data [7, 2, 10], and a common framework for forward, inverse, as well as systems with missing physics.
Physical information is also imparted through observational, inductive (e.g., architectural choices based on
symmetries), and learning biases (soft constraints) [4, 1]. Physics-Informed Neural Networks have been used
successfully in various areas of science ranging from fluid dynamics, biophysics, plasma physics, quantum
chemistry, and materials science. Current research in the field is pursuing new avenues such as scalable
algorithms, probabilistic approaches for uncertainty quantification, hybrid modeling approaches,
and the establishment of rigorous theoretical foundations and sophisticated software packages [8].To
realize the theoretical benefits of Physics-Informed Neural Networks in practice, we created a fully
integrated computational workflow that integrates high-throughput Finite Element Method simulations
and machine learning-based thermal property estimation for multilayer semiconductor packages.

5. Data Generation and Al-Based Prediction Pipeline

This section details the proposed fully integrated computational pipeline for estimating the thermal
conductivity of materials within semiconductor packages using artificial intelligence. The pipeline couples
automated high-fidelity simulations with a data-driven prediction model. Specifically, we target a six-
layer semiconductor structure, leveraging finite element thermal simulations to generate temperature
responses under controlled thermal loading. These responses are then used to train a neural network capable of
inferring thermal conductivity across individual layers. The overarching goal is to develop a surrogate model
that predicts internal material properties from Finite Element Method thermal measurements, with
potential application in digital twins and real-time diagnostics.
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Figure 4: Workflow Diagram

6. Simulation Environment and Dataset Generation

Thermal behavior of semiconductor package was simulated by ANSYS MAPDL, invoked through Python under
the PyAnsys API for complete automation. For every simulation run, thermal conductivity of the six inner
layers had been perturbed randomly with values picked from a uniformly bounded distribution in +10% of
typical engineering baselines. This was done to provide a realistic account of manufacturing tolerance along
with environmental variations.

The end-to-end simulation process included:

+ Generating the 3D layered geometry.



« Assigning randomized conductivities to each layer.
+ Applying thermal loads and boundary conditions.
« Meshing, solving the heat equation, and extracting temperature results.

This induced heterogeneity was critical for training a generalizable learning model.

6.1. Boundary Conditions and Thermal Loading

Simulations imposed a constant 0°C boundary condition on the top and bottom surfaces of the structure,
replicating the heat sinks. Internal volumetric heat generation replicated device-level power dissipation. The
resulting steady-state heat transfer equation was solved numerically:

V. (kVT)+Q =0

Where k is the space-dependent conductivity and () the internal heat generation. The boundary-driven
temperature gradients recorded the thermal response with sensitivity to the conductivity prescribed.

6.2. High-Throughput Execution

To meet dataset size requirements, a multithreaded Python orchestration layer coordinated concurrent
MAPDL session launches with dynamic port assignments. This allowed for near-linear scaling with CPU
core count. Over 50,000 simulations were run and recorded successfully, with temperature outcomes and
conductivity vectors written to a structured CSV format.

6.3. Machine Learning Pipeline

The goal of the AI model is to regress the per-layer conductivity values using only high-level temperature
metrics—specifically, the maximum observed temperatures near the junction and the board interface. These
inputs serve as proxy measurements, from which the model must infer the internal material configuration.

6.4. Data Curation and Normalization

The raw simulation output was filtered to ensure data quality. Malformed or duplicated rows were removed,
and entries with negligible heat flow (Temperatures < 0.2°C) were discarded to avoid learning from physically
unrealistic cases.

The final cleaned dataset was standardized using a StandardScaler to center and scale inputs for improved
optimization performance. Output targets (conductivity values) were retained in raw form to preserve
interpretability.

6.5. Evaluation and Results

Prediction accuracy was assessed using both mean and maximum absolute percentage error (APE) per

volume: .
Yy—y

APE = |—=| x 100%
)

The model performs exceptionally well for Volumes 1, 4, 5, and 6, with mean errors near zero and
maximum deviations under 2.5%, as shown in Table 1. In this context, each volume corresponds to one of the
six internal layers of the semiconductor package, whose thermal conductivities were individually varied
during simulation. These layers exhibit consistent and distinct temperature—conductivity relationships,
allowing the network to learn smooth and reliable functional mappings from surface temperature data to
internal material properties.

Volume 2, however, displays a marked degradation in accuracy. The root causes likely include:

« Higher Sensitivity: Volume 2 may lie near thermal bottlenecks where small conductivity shifts produce
amplified effects on junction temperatures.

« Nonlinearity: The relation between conductivity and observed temperature might be highly nonlinear or
multivariate for this layer.

« Data Sparsity: Volume 2 may have been underrepresented in the random sampling space, especially in
edge cases.



Table 1
Mean and Maximum Absolute Percentage Errors by Volume

Volume | Mean Error (%) | Max Error (%)
1 0.02 0.82
2 1.25 25.18
4 0.02 2.22
5 0.02 2.21
6 0.17 0.86

Despite this, the model’s average performance remains suitable for many practical applications. The
consistent accuracy across the majority of layers confirms the feasibility of indirect conductivity estimation
via thermal signatures. Improvements in Volume 2 accuracy could be obtained via data augmentation, targeted
oversampling, or physics-informed loss regularization.

7. Discussion

In summary, this paper introduces a computationally efficient hybrid framework for coupling Finite
Element Method simulations with Physics-Informed Neural Networks to facilitate precise, real-time
inference of internal thermal properties in electronic systems based on sparse external measurements alone. By
closing the gap between high-fidelity physical modeling and embedded, practical deployment, this method is
particularly well-suited to the demands of digital twin applications, predictive diagnostics, and automated
thermal calibration workflows.

Future work can be directed towards extending the framework to a wider class of electronic packages,
enhancing robustness of models with noisy or missing data, and investigating the use of transfer learning
methods to mitigate the requirement of large simulation datasets. Also, the incorporation of real-time sensor
feedback and edge AI deployment can be considered to advance the system’s applicability in industrial,
automotive, and consumer electronics applications.

Declaration on Generative Al During the preparation of this work the authors used Generative Al tools
in order to improve the clarity and quality of expression. After using these tools, the authors reviewed and edited
the content as needed and take full responsibility for the content of the paper.
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