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Abstract
We introduce a method for translating DAISY, a rule-based clinical decision support system, into per-malady
Bayesian network models that incorporate uncertainty while preserving the underlying rule-based logic. DAISY
gathers four categories of medically relevant patient data (demography, anatomical, subjective, and objective) and
uses a decision-support algorithm to generate a set of potential assessments. We map each of DAISY’s clinical
variables to corresponding nodes in a Bayesian network, using directed edges to reflect the original “if-then”
rules. Next, we apply parameter learning to estimate the conditional probability tables. To evaluate our method,
we generated synthetic data that adheres to the DAISY rules and reflects realistic distributions based on clinical
and population-level data. When applied to DAISY’s knowledge base of over 200 maladies, this approach could
result in substantially more informative triage reports, for example by ordering the list of potential assessments
according to their calculated posterior probabilities.
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1. Introduction

Emergency departments (EDs) worldwide face growing challenges due to increasing demand and
limited resources. In the United Kingdom, the National Health Service Constitution handbook pledges
a maximum four-hour ED waiting time, with an operational standard that 95% of patients are admitted,
transferred, or discharged within this timeframe [1]. Yet in 2022-23, NHS Digital reported that over 25
million people attended EDs, with approximately 30% waiting longer than four hours to receive care [2].
This highlights strain on the system and raises concerns about timely and effective care. Furthermore,
British Medical Association data reveal a significant shortage of doctors in England and many vacant
positions [3]. These challenges are not unique to the UK: the World Health Organisation has reported
that many European countries are facing “substantial shortages and gaps” [4]. The culmination of these
pressures results in a challenging and high-stress working environment for ED staff, many of whom
work long hours and report increasing levels of job dissatisfaction [5].

A key component in managing ED patient flow is triage, the “clinical process to prioritise patients,
completed before a full assessment to support effective management of demand and flow, identifying time
critical requirements for patients” [6]. This process typically comprises five stages [7]:

1. Reception: Administrative staff gather preliminary information by observing the patient and
listening to their concerns. Patients who need immediate care can be escalated at this stage;
otherwise, they progress to the next.

2. History and Symptoms: A triage clinician collects detailed patient information, asking questions
about their medical history and current symptoms.

RuleML+RR’25: Companion Proceedings of the 9th International Joint Conference on Rules and Reasoning, September 22–24, 2025,
Istanbul, Turkiye
Envelope-Open georgia.sowerby@york.ac.uk (G. Sowerby); tunde.ashaolu@nhs.net (O. Ashaolu); radu.calinescu@york.ac.uk
(R. Calinescu); stephen.connor@york.ac.uk (S. Connor)
Orcid 0000-0002-6145-8336 (G. Sowerby); 0000-0002-7829-4884 (O. Ashaolu); 0000-0002-2678-9260 (R. Calinescu);
0000-0002-9785-2159 (S. Connor)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:georgia.sowerby@york.ac.uk
mailto:tunde.ashaolu@nhs.net
mailto:radu.calinescu@york.ac.uk
mailto:stephen.connor@york.ac.uk
https://orcid.org/0000-0002-6145-8336
https://orcid.org/0000-0002-7829-4884
https://orcid.org/0000-0002-2678-9260
https://orcid.org/0000-0002-9785-2159
https://creativecommons.org/licenses/by/4.0/deed.en


3. Vital Sign Measurement: Often occurring in tandem with the previous stage, the clinician
measures and records the patient’s vital parameters (e.g., temperature, heart rate, respiratory rate,
blood pressure, oxygen saturation).

4. Initial Assessment: The clinician analyses the collected data to determine the patient’s triage
score and suggest potential assessments. This analysis can lead to various actions, such as
escalating the case, returning the patient to the waiting room, or transferring them to a different
department.

5. Senior Clinician Review: A senior clinician reviews the collected patient information and
any potential assessments suggested by the clinician from Stage 4, then conducts a physical
examination. They then decide on a treatment plan, which might include treating and discharging,
referring for further investigations, admitting, or transferring to another facility.

This process is vulnerable to inconsistency, especially during busy periods. Clinical decision support
systems (CDSSs) offer one possible solution to improve triage consistency and support overloaded
clinicians by helping doctors make fair, evidence-based decisions regarding patient care. CDSSs are
classified into knowledge-based or non-knowledge-based [8]. Knowledge-based systems use explicit
rules, usually formulated as if-then statements, to represent medical knowledge. In contrast, non-
knowledge based systems use machine learning (ML) techniques to identify patterns from large datasets.
Although increasingly common in research, the real-world use of non-knowledge based CDSS’s is
limited due to concerns including explainability and limited access to high-quality data [8]. Knowledge-
based systems are often preferred in clinical environments because their recommendations can be traced
to clear, interpretable rules. However, these systems are deterministic and do not model uncertainty,
which can limit their flexibility when information is incomplete or ambiguous.

One prototypical example of such systems is DAISY [9, 10, 7, 11], a knowledge-based CDSS developed
to support ED triage by automating stages 2 through 4 of the process. It uses a rule-based architecture
that prioritises transparency and explainability, but it does not model uncertainty or provide probability-
ranked outputs.

In this paper, we present a method for converting DAISY into per-malady Bayesian network models,
retaining its rule-based logic while enabling probabilistic reasoning. This enhancement allows the
system to acknowledge uncertainty and generate probability distributions for possible assessments,
rather than outputting simple binary decisions, potentially improving the informativeness of triage
reports.

2. Related Work

Many clinical decision support systems have been proposed over the years. One of the earliest and most
influential was INTERNIST-I, developed in the 1970s to address the growing complexity of internal
medicine [12]. At its peak, the INTERNIST-I knowledge base included 572 diagnoses and over 4000
patient findings, with more than 4000 rules [13]. The rules were written by medical experts using
textbooks and their own experience. However, the system had several limitations: it treated users as
passive, required highly specific terminology for input, and generated consultations that lasted up to 75
minutes, which made it impractical for fast-paced clinical settings such as the ED.

To address these issues, Quick Medical Reference (QMR) was developed in the early 1980s. Like
INTERNIST-I, QMR used the same knowledge base but acted more as an interactive information tool.
It allowed users to input findings and receive feedback, supported by a completer feature to improve
usability. Around the same time, ILIAD was introduced. While it began as a deterministic system, it
later adopted a Bayesian network (BN) formalism. The resulting model included 11, 406 nodes, with
some structures extending to 36 levels and common findings shared by up to 62 parent nodes [14].

The transition to BNs in ILIAD reflected their advantages in handling uncertainty, a key challenge
in medical reasoning [15, 16]. BNs also provide a clear graphical structure and can model causal
relationships, making them well-suited to safety-critical applications like ED triage. In a comparative



study based in the ED, ILIAD outperformed QMR, providing correct diagnoses in 72% of cases versus
QMR’s 52%, although both systems generated long differential lists [17].

Machine learning has been used in emergency medicine applications such as predicting hospital
admission [18, 19], workflow optimisation [20, 21], critical care [22, 23], and specific conditions such as
sepsis or stroke [24, 25]. However, the lack of explainability in many of these models raises concerns
[26, 8]. To address these concerns, recent research has focused on translating rule-based expert systems
into Bayesian networks (e.g., [27, 28]). Our work builds on these developments by converting the DAISY
triage system into a Bayesian network. DAISY was selected as the foundation for this research because
it is actively maintained and specifically tailored to emergency triage. As members of the DAISY team,
we have direct access to the codebase and to the clinical collaborators involved in its development. This
makes it a more suitable platform than larger but less accessible systems such as INTERNIST-I.

3. Preliminaries

DAISY [9, 10, 7] gathers four categories of medically relevant information for an ED patient being
triaged:

• Demography: The patient’s medical history.
• Anatomical: Specific parts of the body affected.
• Subjective: Symptoms reported directly by the patient.
• Objective: The patient’s vital signs.

Each category includes a set of variables that collectively describe the patient’s clinical presentation
in a structured manner. For example, the Demography category includes variables such as age, sex,
and recent trauma. The Anatomical category includes variables that identify affected body parts such
as head and chest. The Subjective category includes variables representing self-reported symptoms
including pain and nausea. The Objective category includes variables for vital signs such as pulse rate
and temperature.

The values of the variables within the Demography, Anatomical, and Subjective categories are
obtained by asking the patient questions, which they answer via a touch-screen interface. The Objective
category is obtained by instructing the patient to use medical devices in the room to measure their vital
signs.

This information is processed by dAvInci, the rule-based expert system at the core of the DAISY
project. It uses over 200 doctor-specified rules to output the patient’s triage score and a set of potential
assessments, suggested investigations, treatments and referrals. A triage report, which contains the
information gathered by DAISY alongside the output from dAvInci, is made available to the patient’s
doctor.

DAISY is not merely conceptual. It has been implemented in a clinical setting and is currently
undergoing a feasibility study at Scarborough Hospital as part of a registered clinical trial [11]. The
study will involve 100 patients and will evaluate DAISY’s acceptability, consultation duration, patient
engagement, and clinical concordance compared to standard triage. These measures will provide insight
into how well DAISY fits into real-world practice and how its outputs align with clinician assessments.
The study will also generate real-world triage data to support the evaluation of the Bayesian network
approach developed in this research.

To illustrate how DAISY’s rules are expressed and how they can be translated into a Bayesian
network, we introduce a simple example: the rule for SIRS; Meningitis1. This shows how demographic
information, reported symptoms, and objective vital signs are combined within DAISY to trigger a
malady assessment, and it will be used as a running example throughout the paper to demonstrate and
explain our methodology.

1We use the label ‘SIRS; Meningitis’ to refer to cases where systemic inflammatory response syndrome (SIRS) is present in
conjunction with or as a result of meningitis.



Example: SIRS; Meningitis

As a concrete example, consider the rule for identifying possible SIRS; Meningitis. The rule is triggered if
the following conditions are met:

• Demography The patient has no history of recent physical trauma
• Anatomy and Subjective The patient reports a problem with their head and is bothered by bright

lights (photophobia)
• Objective At least two of the following are true: abnormal temperature (e.g., low or high), elevated

respiratory rate, elevated pulse rate

This rule can be formalised as:

Demography_RecentTrauma = no

∧ Head_BotheredByBrightLights = yes

∧ ((Objective_Temperature ≠ normal ∧ Objective_RespiratoryRate = high)

∨ (Objective_Temperature ≠ normal ∧ Objective_PulseRate = high)

∨ (Objective_RespiratoryRate = high ∧ Objective_PulseRate = high))

⟹ Malady_SIRSMeningitis = yes

Our goal is to represent this logic within a Bayesian network whose probabilities can be used to
relax the strict binary logic of these rules. Rather than requiring at least two abnormal vital signs to
consider SIRS; Meningitis as a potential assessment, its probability increases with each abnormal vital
sign. When more evidence is present, the probability changes accordingly, providing a more flexible,
realistic way to support clinical decision-making under uncertainty.

4. Methodology

To translate DAISY’s rule-based logic into a probabilistic model, we constructed separate Bayesian
network models for each malady. We then generated synthetic training data and applied parameter
learning to estimate their conditional probabilities. Each step of this process is illustrated using the
running example of SIRS; Meningitis, introduced in Section 3.

4.1. Bayesian Network Construction

A separate Bayesian network is constructed for each malady represented in the DAISY knowledge base.
Within each network, all variables from the DAISY categories Demography, Objective, and Malady are
mapped to corresponding nodes. In DAISY, symptoms are always recordedwith an associated anatomical
variable, and these are combined in the Bayesian network into a single node type, Anatomy_Subjective.
DAISY also includes a special Anatomy variable, ‘General’, to indicate that a symptom is not localised
to a specific anatomical location (e.g., nausea).

Directed edges are added based on predefined causal assumptions representing clinical knowledge:

• Demography → Malady A patient’s demographic and medical history can influence the proba-
bility of developing certain conditions.

• Malady → Anatomy_Subjective, Objective Once present, a malady is expected to cause
symptoms and physiological changes.

Continuous variables, such as temperature and respiratory rate, are discretised into clinically mean-
ingful intervals based on thresholds defined in DAISY’s existing rule base. Although not reported here,
we are also experimenting with representing these variables as continuous nodes within the Bayesian
network to allow for more flexible modelling.



The networks are implemented in Bayes Server [29], with their structure defined using the Java API
within R. The structure of the DAISY rule base permitted the majority of the network topology to be
generated programmatically in a systematic and efficient manner.

4.2. Synthetic Data Generation

Due to the absence of suitable datasets, we generated synthetic data for 1000 patients using an R script,
splitting the dataset into 700 cases for training and 300 for testing. The distributions from which
the variables in the network were sampled were designed to reflect realistic emergency department
conditions, while adhering to DAISY’s original rule constraints. For the running example of SIRS;
Meningitis, the variables and their associated distributions are shown in Table 1. These distributions
were specified to provide sufficient training data while preserving clinically meaningful conditional
relationships, such as a higher probability of photophobia when SIRS; Meningitis is present. The
distribution parameters were set in consultation with clinical collaborators to approximate typical
values for both normal and abnormal presentations.

Table 1
Variables used in the SIRS; Meningitis example

Variable Type Description Distribution

Malady_SIRSMeningitis Binary Indicates whether the
individual has SIRS;
meningitis

Probability of ”Yes” = 5%

Demography_RecentTrauma Binary Indicates whether the
individual experienced
recent physical trauma

When Malady_SIRSMeningitis = ”Yes”,
probability of ”Yes” = 15%
When Malady_SIRSMeningitis = ”No”,
probability of ”Yes” = 40%

Head_BotheredByBrightLights Binary Indicates whether the
individual reported
sensitivity to bright
lights

When Malady_SIRSMeningitis = ”Yes”,
probability of ”Yes” = 88%
When Malady_SIRSMeningitis = ”No”,
probability of ”Yes” = 15%

Objective_Temperature Continuous Body temperature (∘C) When Malady_SIRSMeningitis = ”Yes”,
Objective_Temperature is drawn randomly from
either 𝑁(35.5, 0.25) or 𝑁(38.5, 0.35) with equal
probability, bounded to [34, 41].
When Malady_SIRSMeningitis = ”No”,
Objective_Temperature is drawn from
𝑁(36.8, 0.7), bounded to [34, 41].

Objective_RespiratoryRate Continuous Respiratory rate
(breaths per minute)

When Malady_SIRSMeningitis = ”Yes”,
Objective_RespiratoryRate is drawn from
𝑁(26, 7), bounded to [6, 35].
When Malady_SIRSMeningitis = ”No”,
Objective_RespiratoryRate is drawn from
𝑁(16, 7), bounded to [6, 35].

Objective_PulseRate Continuous Pulse rate (beats per
minute)

When Malady_SIRSMeningitis = ”Yes”,
Objective_PulseRate is drawn from 𝑁(120, 35),
bounded to [30, 180].
When Malady_SIRSMeningitis = ”No”,
Objective_PulseRate is drawn from 𝑁(75, 25),
bounded to [30, 180].

4.3. Parameter Learning

The continuous variables in the synthetic dataset were discretised prior to training. Discretisation was
carried out using interval-based state definitions, with thresholds chosen to reflect clinically meaningful



Figure 1: Trained Bayesian network for SIRS; Meningitis, with structure derived from DAISY’s original rule
logic.

ranges as defined in the DAISY rule base. For example, in the SIRS; Meningitis case, temperature was
divided into five states (e.g., Very Low [0, 35], Low [35.1, 36], etc.), respiratory rate into five states, and
pulse rate into six states.

With the Bayesian network structure defined according to DAISY’s rule base, parameter learning
was performed using the Relevance Tree inference algorithm provided by Bayes Server. This algorithm
was chosen for its efficiency and compatibility with discrete and discretised variables.

5. Preliminary Results

We evaluated the Bayesian network for SIRS; Meningitis to assess whether the model produced clinically
meaningful probability estimates and generalised well to unseen data.

5.1. Trained Bayesian network for SIRS; Meningitis

The structure of the trained network reflects DAISY’s rule base, while the conditional probabilities
were learned from the synthetic dataset described in Section 4.2. Figure 1 shows the resulting Bayesian
network.

As expected, the model assigns higher probabilities of SIRS; Meningitis when more supporting
evidence is present. For example, if a patient has no recent trauma, is bothered by bright lights, and has
a high temperature and high pulse rate (but a normal respiratory rate), the model estimates a 76.9%
probability of SIRS; Meningitis. If the respiratory rate is also high, this probability increases to 93.5%.

This example highlights the model’s ability to capture variation in clinical presentation. Although
certain conditions are associated with certain patterns, patients with the same diagnosis may differ in
their medical history, affected anatomy, reported symptoms, and vital signs.

5.2. Discussion

Figure 2 presents box plots of the predicted probabilities for SIRS; Meningitis, grouped by the actual
class label (“Yes” or “No”). The top plot shows results on the training set, and the bottom plot shows



Figure 2: Predicted probabilities for SIRS; Meningitis by actual class. Top: Training Set; Bottom: Test Set

the test set.
In both cases, predicted probabilities are clearly separated between positive and negative classes.

Patients in the “Yes” group consistently receive higher predicted probabilities than those in the “No”
group, indicating that the model has learned to distinguish between the two classes effectively. The
similarity between training and test results suggests that the model generalises well without signs of
overfitting.

6. Conclusion

In this paper, we presented a method for translating the DAISY rule-based expert system into per-malady
Bayesian networks, using the rule for SIRS; Meningitis as a running example. This approach preserves
the explainability of rule-based systems while enabling the model to handle uncertainty and generate
probability-ranked assessments rather than binary outputs.

Our preliminary results show that the trained Bayesian network produces clinically meaningful
probability estimates, separates positive and negative cases effectively, and generalises well to unseen
data.

Future work is in progress to extend this approach. We have constructed the structure of a Bayesian
network for the entire DAISY knowledge base, covering over 200 maladies with approximately 300
nodes and more than 1500 links. This network has not yet been trained, but data from DAISY’s ongoing
feasibility study will provide real-world triage data for this purpose. Moving from per-malady models
to a combined network will also allow us to investigate how co-morbidities can be represented, better
reflecting the complexity of real-world clinical presentations.
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