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Abstract
Pearl observes that causal knowledge enables predicting the effects of interventions, whereas descriptive knowl-
edge only permits drawing conclusions from observations. This paper brings Pearl’s approach to causality
and interventions into stratified abductive logic programming. It shows how stable models of such programs
can be given a causal interpretation by building on philosophical foundations developed in recent work by
Bochman and Eelink et al. In particular, it translates abductive logic programs into the causal systems of Eelink
et al., thereby clarifying the informal causal reading of logic program rules. The main results establish that the
stable model semantics for stratified programs conforms to key philosophical principles of causation, including
causal sufficiency, natural necessity, and the irrelevance of unobserved effects. This justifies the use of stratified
abductive logic programs as a framework for causal modeling and for predicting the effects of interventions.
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1. Introduction

After being a central topic of philosophical inquiry for over two millennia, causality entered the
mainstream of artificial intelligence research through the work of Pearl [1]. A key feature of his account
is that causal knowledge goes beyond descriptive knowledge in the questions it can address: while
descriptive knowledge permits only inferences from observations, causal knowledge enables reasoning
about the effects of external interventions such as actions on the modeled system.

Example 1.1. Consider a road that passes through a field with a sprinkler. Assume the sprinkler is turned
on by a weather sensor when it is sunny. Suppose further that it rains whenever it is cloudy, and that the
road becomes wet if either it rains or the sprinkler is activated. Finally, assume that a wet road is dangerous.
Observing that the sprinkler is on, one might conclude that the weather is sunny. However, actively

intervening and switching the sprinkler on does not cause the weather to become sunny. To predict the
effect of such an intervention, one needs causal—not merely descriptive—knowledge.

Since evaluating the effects of possible actions is one of the primary motivations for modeling in
the first place, this has paved the way for the adoption of causal frameworks across a wide variety of
domains [2, 3, 4].

Pearl [1], however, develops his theory of causality exclusively within his own formalisms: Bayesian
networks and structural causal models.

Example 1.2. Recall Example 1.1, and denote by 𝑐 the event that the weather is cloudy, by 𝑠 the event that
the sprinkler is on, by 𝑟 the event of rain, by 𝑤 the event that the road is wet, and by 𝑑 the event that the
road is dangerous.
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Pearl [1] models these causal mechanisms as a system of structural equations:

𝑟 ∶= 𝑐 𝑠 ∶= ¬𝑐 𝑤 ∶= 𝑟 ∨ 𝑠 𝑑 ∶= 𝑤 (1)

Since the mechanisms do not specify whether it is cloudy, Pearl [1] treats 𝑐 as an external variable or error
term. The solutions of the corresponding causal model ℳ are obtained by solving Equations (1) for 𝑐 = ⊤
and 𝑐 = ⊥. If the sprinkler is observed to be on, then according to Equations (1), it must be sunny.

The intervention ofmanually switching the sprinkler on is represented bymodifying the causal mechanism
for the sprinkler so that it is on regardless of the weather. This is captured in the structural equations below:

𝑟 ∶= 𝑐 𝑠 ∶= ⊤ 𝑤 ∶= 𝑟 ∨ 𝑠 𝑑 ∶= 𝑤 (2)

Again, 𝑐 is considered an external variable, and the solutions of the corresponding causal modelℳ𝑠 represent
the possible states of the world after the intervention of switching the sprinkler on manually. Note that 𝑠 is
now true independently of the weather.

In philosophy, the idea that causal explanations are given by rules of the form “𝜙 causes 𝜓” is well
established, for instance, in René Descartes’ Principles of Philosophy II:37 (see the translation by Miller
and Miller [5]). This makes abductive logic programming [6] a natural target formalism for representing
causal knowledge. An abductive logic program consists of a set of rules P and a set of propositions 𝔄,
called abducibles. Similar to external variables in Pearl’s causal models, abducibles are independently
assumed to be either true or false.

Rückschloß and Weitkämper [7] apply Clark completion [8] to relate probabilistic logic programming
to Pearl’s theory of causality, thereby transferring Pearl’s notion of intervention. Similarly, abductive
logic programs can be translated into causal models, enabling a principled treatment of interventions.

Example 1.3. The situation in Example 1.1 gives rise to the rules:

𝑟 ← 𝑐 𝑠 ← ¬𝑐 𝑤 ← 𝑟 𝑤 ← 𝑠 𝑑 ← 𝑤 (3)

Since 𝑐 can be either true or false, it is considered an abducible; that is, 𝔄 ∶= {𝑐}. Reading Pearl’s “∶=” sign
as logical equivalence “↔,” the Clark completion [8] implies that the models of the resulting abductive logic
program coincide with the solutions of the causal model ℳ in Equations (1) of Example 1.2.
Intervening and switching the sprinkler on manually results in the rules:

𝑟 ← 𝑐 𝑠 ← ⊤ 𝑤 ← 𝑟 𝑤 ← 𝑠 𝑑 ← 𝑤 (4)

Again, Clark completion [8] yields that the models of the resulting abductive logic program coincide with
the solutions of the causal modelℳ𝑠 in Equations (2) of Example 1.2.

Notably, this approach provides an informal semantics for abductive logic programs, where each
rule ℎ ← 𝑏1, … , 𝑏𝑛 is interpreted as “𝑏1 ∧… ∧ 𝑏𝑛 causes ℎ”. However, translating abductive logic programs
into causal models via the Clark completion [8] and replacing logical equivalence “↔” with Pearl’s “∶=”
sign can lead to counterintuitive results when cyclic causal relations are involved.

Example 1.4. Assume ℎ1 and ℎ2 are two neighboring houses. Let 𝑓𝑖 denote the event that House ℎ𝑖 is on
fire, and 𝑠𝑓𝑖 the event that House ℎ𝑖 starts burning, for 𝑖 ∈ {1, 2}. It is reasonable to assume that a fire in
House ℎ1 leads to a fire in House ℎ2, and vice versa.
This situation can be modeled by the cyclic abductive logic program 𝒫, consisting of the ab-

ducibles 𝔄 ∶= {𝑠𝑓1, 𝑠𝑓2} and the rules:

𝑓1 ← 𝑠𝑓1 𝑓2 ← 𝑠𝑓2 𝑓2 ← 𝑓1 𝑓1 ← 𝑓2 (5)

Proceeding as in Example 1.3, forming the Clark completion [8] and replacing logical equivalence “↔”
with Pearl’s “∶=” sign relates 𝒫 to a causal model that admits a solution corresponding to the struc-
ture 𝜔 ∶= {𝑓1, 𝑓2}. In 𝜔, both houses are on fire even though neither house actually started to burn. This
contradicts the intuition that houses do not spontaneously catch fire merely because they influence each
other.



This work extends the applicability of Pearl’s ideas to stratified abductive logic programs with
cyclic causal relations. Building on prior work by Bochman [9] and Eelink et al. [10], it connects logic
programming to explanations that satisfy Principles 1–5 from philosophy, as stated below.

Principle 1 (Causal Foundation). Causal explanations originate from external premises, whose explana-
tions lie beyond a given scope.

Principle 2 (Natural Necessity). “…given the existence of the cause, the effect must necessarily follow.”
(Thomas Aquinas: Summa Contra Gentiles II:35.4; translation by Anderson [11])

Principle 3 (Sufficient Causation). “…there is nothing without a reason, or no effect without a cause.”
(Gottfried Wilhelm Leibniz: First Truths; translation by Loemker [12], p. 268)

Principle 4 (Causal Irrelevance [13]). Effects beyond the given scope have no influence on beliefs.

Principle 5 (Non-Interference). The impact of interventions is restricted to the direction from causes to
effects.

If propositions can only be explained through other propositions, the resulting explanations are
either cyclic or lead to an infinite regress. As Aristotle argues in his Posterior Analytics (see Barnes’
translation [14, pp. 117–118]), infinite chains and cyclical arguments are not genuinely explanatory.
To circumvent this problem, Principle 1 assumes that explanations take place within a given scope,
just as explanations in chemistry rely on results from physics. Principle 2 states that every statement
that can be explained indeed takes place, and Principle 3 states that every statement that takes place
can be explained. Principle 4 states that extending the scope and including further effects does not
change the result of the initial explanations. For example, if one adds a rule 𝑖 ← 𝑑 to Equations (3) of
Example 1.3, stating that somebody is injured if the road is dangerous, this does not affect the causal
explanation of why the road is dangerous. Finally, Principle 5 states that the effect of interventions
propagates exclusively from causes to effects. As illustrated in Example 1.1, this means, for instance,
that switching on the sprinkler manually has no effect on the weather.

Theorem 4.2 translates abductive logic programs into the causal systems of Eelink et al. [10], thereby
relating the stable model semantics to Principles 1, 2, and 3. Theorem 4.3 shows that Principle 4 implies 5.
Finally, Theorem 4.4 establishes that stratified programs satisfy Principle 4.

Overall, the results show that stratified abductive logic programs under the stable model semantics
conform to these principles, supporting their use in causal modeling and the prediction of effects from
external interventions.

2. Preliminaries

This section recalls the foundations of the present work: Pearl’s causal models [1], abductive logic
programs [6], and the logical theories of causality developed by Bochman [9] and Eelink et al. [10].

2.1. Pearl’s Causal Models

Pearl [1] suggests modeling causal relationships with deterministic functions. This leads to the following
definition of structural causal models.

Definition 2.1 (Causal Model [1, §7.1.1]). A (structural) causal model ℳ with internal vari-
ables V and external variables U is a system of equations that includes one structural equation of
the form 𝑋 ∶= 𝑓𝑋(Pa(𝑋),Error(𝑋)) for each internal variable 𝑋 ∈ V. Here, the parents Pa(𝑋) ⊆ V of 𝑋
are a subset of internal variables, the error term Error(𝑋) ⊆ U is a subset of external variables, and the
causal mechanism of 𝑋 is a function 𝑓𝑋 that maps each assignment of values to Pa(𝑋) and Error(𝑋) to
a value of 𝑋.

A solution 𝜔 of the structural causal modelℳ is an assignment of values to the variables in V ∪U that
satisfies all structural equations.



Notation 2.2. The parents Pa(𝑉 ) and error terms Error(𝑉 ) of an internal variable 𝑉 ∈ V are typically
evident from the causal mechanism 𝑓𝑉. Accordingly, this work omits explicit references to Pa(⋅) and Error(⋅).

Example 2.1. The causal model ℳ in Example 1.2 has external variables U ∶= {𝑐}, internal vari-
ables V ∶= {𝑟 , 𝑠, 𝑤, 𝑑}, Structural Equations (1), and solutions:

𝜔1 ∶ 𝑐 = ⊤ 𝑟 = ⊤ 𝑠 = ⊥ 𝑤 = ⊤ 𝑑 = ⊤
𝜔2 ∶ 𝑐 = ⊥ 𝑟 = ⊥ 𝑠 = ⊤ 𝑤 = ⊤ 𝑑 = ⊤

In artificial intelligence, causal models are particularly valuable because they can represent external
interventions. As explained in Chapter 7 of Pearl [1], the key idea is to construct a modified model
that incorporates the minimal changes to the structural equations required to enforce an external
intervention.

Definition 2.3 (Modified Causal Model). Fix a causal modelℳ. Let I be a subset of internal variables
with a value assignment i. The modified model or submodel ℳi is the model obtained from ℳ by
replacing, for each variable 𝑋 ∈ I, the structural equation 𝑋 ∶= 𝑓𝑋(Pa(𝑋),Error(𝑋)) with 𝑋 ∶= i(𝑋).

Notation 2.4. Let 𝑉 ∈ V be a Boolean internal variable of a structural causal model ℳ. In this case, one
writes ℳ𝑉 ∶= ℳ𝑉∶=⊤ andℳ¬𝑉 ∶= ℳ𝑉∶=⊥.

Example 2.2. The causal modelℳ𝑠 from Example 1.2 is the modified model corresponding to the value
assignment 𝑠 ∶= ⊤. It has the following solutions:

𝜔1 ∶ 𝑐 = ⊤, 𝑟 = ⊤, 𝑠 = ⊤, 𝑤 = ⊤, 𝑔 = ⊤
𝜔2 ∶ 𝑐 = ⊥, 𝑟 = ⊥, 𝑠 = ⊤, 𝑤 = ⊤, 𝑔 = ⊤

These represent the possible states of the system after manually switching on the sprinkler.

Remark. As in Example 1.2, actions often force a variable in a causal model to take on a new value.
Pearl [1] emphasizes that submodels ℳi typically arise from performing actions that set certain variables
to specific values, a process formalized by the introduction of the do-operator.

2.2. Abductive Logic Programming

This work adopts standard notation for propositions, (propositional) formulas, and structures. A
structure is identified with the set of propositions true in it. The term world denotes a consistent set of
literals that is maximal with respect to inclusion. Since identifying structures with the set of literals
they render true yields a one-to-one correspondence between worlds and structures, the two terms are
used interchangeably.

Example 2.3. A structure 𝜔 in the propositional alphabet𝔓 ∶= {𝑐, 𝑟 , 𝑠, 𝑤 , 𝑑} of Example 2.1 is a complete
state description such as 𝜔1 in Example 2.1. It is identified with the set of propositions {𝑐, 𝑟 , 𝑤 , 𝑑} and the
world {𝑐, 𝑟 , ¬𝑠, 𝑤, 𝑑}.

Fix a propositional alphabet 𝔓. Logic programs consist of rules or clauses.

Definition 2.5 (Clauses and Logic Programs). A (normal) clause 𝐶 is
a formula of the form (ℎ ← (𝑏1 ∧ (𝑏2 ∧ (... ∧ 𝑏𝑛))...)), which is also denoted
as ℎ ← 𝑏1 ∧ ... ∧ 𝑏𝑛, ℎ ← 𝑏1, ..., 𝑏𝑛 or head(𝐶) ← body(𝐶). Here, head(𝐶) ∶= ℎ is an atom, referred
to as the head of the clause 𝐶 and body(𝐶) ∶= {𝑏1, ..., 𝑏𝑛} is a finite set of literals, known as the body of 𝐶.
If body(𝐶) = ∅ and 𝐶 = (ℎ ← ⊤), one denotes 𝐶 by ℎ and calls 𝐶 a fact.
A logic program P is a finite set of clauses. The dependence graph of P is the directed graph over

the alphabet 𝔓 defined as follows: there is an edge 𝑝 → 𝑞 if and only if there exists a clause 𝐶 ∈ P such
that head(𝐶) = 𝑞 and body(𝐶) ∩ {𝑝, ¬𝑝} ≠ ∅. It is denoted by graph(P).



An edge 𝑝
−
→ 𝑞 in graph(P) is negative if there exists a clause 𝐶 ∈ P such that head(𝐶) = 𝑞

and ¬𝑝 ∈ body(𝐶). Similarly, an edge 𝑝
+
→ 𝑞 is positive if there exists a clause 𝐶 ∈ P such that head(𝐶) = 𝑞

and 𝑝 ∈ body(𝐶). Note that an edge may be both negative and positive simultaneously.
A cycle in graph(P) is a finite alternating sequence of nodes and edges of the

form 𝑞 → 𝑝1 → 𝑝2 → ⋯ → 𝑝𝑛 → 𝑞 that begins and ends at the same node 𝑞. The program P is
acyclic if its dependence graph graph(P) contains no cycle. It is stratified if its dependence graph does
not contain a cycle with a negative edge.

Clark [8] translates acyclic programs P to propositional formulas, stating that a valid proposition in
a model 𝜔 needs to have a reason, i.e., a support in 𝜔.

Definition 2.6 (Clark Completion, Supported Model Semantics). Let P be a logic program. The Clark
completion of P is the set of formulas

comp(P) ∶= {𝑝 ↔ ⋁
𝐶∈P, head(𝐶)=𝑝

⋀ body(𝐶)}
𝑝∈𝔓

.

A supported model of P is a model of the Clark completion 𝜔 ⊧ comp(P).

Remark. If there is no clause 𝐶 ∈ P with head(𝐶) = 𝑝 for a proposition 𝑝 ∈ 𝔓, then 𝑝 ↔ ⊥ ∈ comp(P),
since the disjunction over the empty set evaluates to false.

Example 2.4. Rules (3) define an acyclic logic program P whose unique supported model is 𝜔2 in
Example 2.1.

Although the supported model semantics is formally well-defined for general propositional logic
programs, i.e., it associates a unique (possibly empty) set of models to each program P, it yields
counterintuitive results for cyclic programs.

Example 2.5. Rules (5) define a stratified logic program P with two supported models: 𝜔1 ∶= ∅
and 𝜔2 ∶= {𝑓1, 𝑓2}. In 𝜔2, both houses are on fire, even though there is no initial cause for either to
start burning – contradicting everyday intuition.

For general, potentially cyclic programs, Gelfond and Lifschitz [15] argue that the stable model
semantics provides a more appropriate notion of a model. Rather than adopting the more common
formulation via reducts, this work follows the equivalent definition based on unfounded sets, originally
introduced by Saccà and Zaniolo [16] and listed as Definition D in Lifschitz [17].

Definition 2.7 (Unfounded Sets and Stable Models). Let 𝜔 be a structure, 𝐼 ⊆ 𝜔 a non-empty subset of
the set of atoms that are true in 𝜔, and P a logic program. Then, 𝐼 is an unfounded set with respect to 𝜔
and P if, for each 𝑝 ∈ 𝐼, every rule in P with head 𝑝 has some body literal 𝑏 that is either not true in 𝜔 or
belongs to 𝐼.

A structure 𝜔 is a stable model of P if it satisfies every clause of P when interpreted as a propositional
formula and if there is no unfounded set 𝐼 ⊆ 𝜔 with respect to 𝜔 and P.

Example 2.6. In Example 2.5, the only stable model is 𝜔1, as intended. The set 𝜔2 is not stable because it
is unfounded with respect to itself and the program P.

Gelfond and Lifschitz [15] prove the following results:

Theorem 2.1 (Supported and Stable Models). Every stable model of a logic program is also a supported
model □.

Theorem 2.2 (Stable Models of Stratified Programs). Every stratified program has a unique stable
model. □



Abductive logic programming was identified as a distinct branch of logic programming by Kakas and
Mancarella [6], with the goal of providing an explanation for a given set of observations in terms of
so-called abducibles.

Definition 2.8 (Abductive Logic Program [18]). An integrity constraint IC is an expression of the
form ⊥ ← 𝑏1 ∧ ... ∧ 𝑏𝑛 also written ⊥ ← body(𝐼𝐶), where body(IC) is a finite set of literals.
An abductive logic program is a triplet 𝒫 ∶= (P, 𝔄, IC) consisting of a logic program P, a finite set

of integrity constraints IC and a set of abducibles 𝔄 ⊆ 𝔓 such that no abducible 𝑢 ∈ 𝔄 is the head of a
clause in P. Finally, 𝒫 is acyclic or stratified if the underlying logic program P is.

In the context of databases, integrity constraints serve as sanity checks on data [19, Chapter 9]. In a
causal setting, they are used to represent observations; that is, they ensure that the knowledge encoded
by the causal rules in the program P and the explanations in 𝔄 is consistent with the given observations.

Example 2.7. Let P denote the logic program in Example 2.4. Since the causal knowledge in Example 1.1 is
expected to be insufficient to explain whether it is cloudy, 𝑐 is declared as the only abducible, that is,𝔄 ∶= {𝑐}.
One may also observe that the sprinkler is on, leading to the integrity constraint IC ∶= {⊥ ← ¬𝑠}. Together,
this yields the abductive logic program 𝒫 ∶= (P, 𝔄, IC).

Lastly, the various semantics of an abductive logic program are recalled.

Definition 2.9 (Models of Abductive Logic Programs). A stable or supportedmodel 𝜔 ⊆ 𝔓 of the abduc-
tive logic program 𝒫 ∶= (P, 𝔄, IC) satisfies the integrity constraints IC, i.e., 𝜔 ⊧ IC (meaning 𝜔 ̸⊧ body(IC))
for all IC ∈ IC and is a stable or supported model of the program P ∪ (𝜔 ∩ 𝔄). The set 𝜖 ∶= 𝜔 ∩ 𝔄 is then
called the explanation of 𝜔. In this context, the program 𝒫 is consistent if it has at least one model for
every choice of abducibles.

Remark. If the abductive logic program 𝒫 ∶= (P, 𝔄, IC) is not consistent, there exists a truth-value
assignment 𝜖 on 𝔄 such that 𝒫 has no model with explanation 𝜖. In this case, one would conclude, against
the direction of cause and effect, that 𝜖 is impossible, contradicting Principle 4.

Example 2.8. The abductive logic program in Example 1.3 has two stable and supported models, namely 𝜔1
and 𝜔2 from Example 2.1, with explanations 𝜖1 ∶= {𝑐} and 𝜖2 ∶= ∅, respectively.
Since only 𝜔2 is consistent with the observation that the sprinkler is on, expressed by the integrity

constraint ⊥ ← ¬𝑠, it is the only supported model of the abductive logic program 𝒫 in Example 2.7.

Rückschloß andWeitkämper [7] connect probabilistic logic programming to Pearl’s theory of causality.
Following their approach, the Clark completion [8] of abductive logic programs without integrity
constraints gives rise to causal models, thereby transferring Pearl’s notion of an intervention:

Definition 2.10 (CM-Semantics). Let 𝒫 ∶= (P, 𝔄, ∅) be an abductive logic program without integrity
constraints. The causal model semantics of 𝒫 is the causal model CM(P) that is given by the external
variables 𝔄, the internal variables 𝔓 ∖ 𝔄 and the structural equations 𝑝 ∶= ⋁

𝐶∈P
head(𝐶)=𝑝

⋀ body(𝐶).

To represent the intervention of forcing the atoms in I ⊆ 𝔓 ∖ 𝔄 to attain values according to the
assignment i, the modified (abductive logic) program 𝒫i ∶= (Pi, 𝔄i, ∅) is obtained from 𝒫 by the
modifications below:

Remove all clauses 𝐶 from P for which head(𝐶) ∈ i or ¬head(𝐶) ∈ i.
Add a fact 𝑝 to Pi whenever 𝑝 ∈ i.

Remark. By construction, a structure 𝜔 is a solution of CM(P) if and only if it is a supported model of P.
Moreover, by construction, CM(Pi) = CM(P)i.

Example 2.9. In Example 1.3, Rules (4) correspond to the modified program 𝒫𝑠 that corresponds to the
assignement 𝑠 ∶= ⊤.



2.3. Bochman’s Logical Theory of Causality and Causal Systems

To verify that the stable model semantics is causally meaningful, this contribution builds upon the work
of Bochman [9] and Eelink et al. [10]. Both rely on the idea that causal knowledge should be expressed
in the form of rules.

Definition 2.11 (Causal Rules and Causal Theories). A (literal) causal rule 𝑅 is an expression of the
form 𝑏1 ∧ ... ∧ 𝑏𝑛 ⇒ 𝑙, also denoted by {𝑏1, ..., 𝑏𝑛} ⇒ 𝑙, where 𝑏1, ..., 𝑏𝑛, 𝑙 are literals. One calls 𝑏1 ∧ ⋯ ∧ 𝑏𝑛 the
cause and 𝑙 the effect of 𝑅. Informally, 𝑅 means that 𝑏1 ∧ ⋯ ∧ 𝑏𝑛 causes 𝑙. If, in addition, 𝑙 ∈ 𝔓 is an atom,
the rule 𝑅 is atomic. A default rule is a causal rule of the form 𝑙 ⇒ 𝑙 for one literal 𝑙. A causal theory is
a set of causal rules Δ. It is called atomic if it contains only atomic causal rules.

Remark. Note that causation “⇒” is not reflexive; that is, 𝑙 ⇒ 𝑙 does not hold for all literals 𝑙. Bochman [9]
interprets default rules of the form 𝑙 ⇒ 𝑙 as indicating that the literal 𝑙 is self-explained, meaning it can
serve as a starting point for a causal explanation.

Example 2.10. The situation in Example 1.4 gives rise to the following causal theory Δ:

𝑠𝑓1 ⇒ 𝑠𝑓1 𝑠𝑓2 ⇒ 𝑠𝑓2 𝑠𝑓1 ⇒ 𝑓1 𝑠𝑓2 ⇒ 𝑓2 𝑓1 ⇒ 𝑓2 𝑓2 ⇒ 𝑓1
¬𝑠𝑓1 ⇒ ¬𝑠𝑓1 ¬𝑠𝑓2 ⇒ ¬𝑠𝑓2 ¬𝑓1 ⇒ ¬𝑓1 ¬𝑓2 ⇒ ¬𝑓2

The default rule ¬𝑓1 ⇒ ¬𝑓1 expresses that no explanation is required for House 1 not burning; that is,
House 1 is assumed not to burn unless an explanation for 𝑓1 is given. Since both default rules 𝑠𝑓1 ⇒ 𝑠𝑓1
and ¬𝑠𝑓1 ⇒ ¬𝑠𝑓1 are included in Δ, the truth value of 𝑠𝑓1 can be chosen freely.

Bochman [9] extends the rules in a causal theory to an explainability relation.

Definition 2.12. Let Δ be a causal theory. The binary relation (⇛Δ)/2 of explainability is defined
inductively from the causal rules as follows:

If 𝜆 ⇒ 𝑙, then 𝜆 ⇛Δ 𝑙. (Causal rules)
If 𝜆 ⇛Δ 𝑙, then 𝜆 ∪ 𝜆′ ⇛Δ 𝑙. (Literal Monotonicity)
If 𝜆′ ⇛Δ 𝑙 and 𝜆 ∪ {𝑙} ⇛Δ 𝑙′, then 𝜆 ∪ 𝜆′ ⇛Δ 𝑙′. (Literal Cut)
{𝑝, ¬𝑝} ⇛Δ 𝑙 for all propositions 𝑝 and literals 𝑙. (Literal Contradiction)

If 𝜆 ⇛Δ 𝑙, it is said that 𝜆 explains 𝑙.

Remark. Bochman [9] initially allows causal rules of the form 𝜙 ⇒ 𝜓 and explainability relations of
the form 𝜙 ⇛ 𝜓, where 𝜙 and 𝜓 are arbitrary formulas. He argues that explainability (⇛)/2 satisfies
all the properties of material implication “→”, except reflexivity (i.e., 𝜙 → 𝜙 does not necessarily hold).
Given a causal theory Δ in the sense of Definition 2.11, this work restricts attention to explainability
relations as characterized in Definition 2.12. Theorem 4.23 in Bochman [9] then provides the basis for this
characterization.

Example 2.11. In Example 2.10, one finds that 𝑓1 ⇛Δ 𝑓1 and 𝑓2 ⇛Δ 𝑓2, even though the causal theory Δ
does not explicitly assert that 𝑓1 or 𝑓2 are defaults.

Bochman’s semantics [9] for causal theories is grounded in Principles 2 and 3:

Definition 2.13 (Causal World Semantics). A causal world for a causal theory Δ is a world 𝜔 such that,
for every literal 𝑙, the following formalization of Principles 2 and 3 hold:

Formalization of Principle 2:
If 𝜔 ⇛Δ 𝑙, then 𝑙 ∈ 𝜔.

Formalization of Principle 3:
If 𝑙 ∈ 𝜔, then 𝜔 ⇛Δ 𝑙.

The causal world semantics Causal(Δ) is the set of all causal worlds of Δ.



Bochman [9] gives the following alternative characterisation for the causal worlds 𝜔 of a causal
theory Δ.

Definition 2.14 (Completion of Causal Theories). The completion of a causal theory Δ is the set of

formulas comp(Δ) ∶= {𝑙 ↔ ⋁
𝜙⇒𝑙∈Δ

𝜙}
𝑙 literal

.

Theorem 2.3 (Completion of Causal Theories [20, Theorem 8.115]). The causal world seman-
tics Causal(Δ) of a causal theory Δ coincides with the set of all models of its completion:

Causal(Δ) = {𝜔 world: 𝜔 ⊧ comp(Δ)}. □

Example 2.12. In Example 2.10, the theory Δ has the causal world 𝜔 ∶= {𝑓1, 𝑓2}, which contradicts
everyday causal reasoning as explained in Example 1.4. Note that 𝜔 is a causal world of Δ since the
framework of causal theories allows for the cyclic explanations in Example 2.11.

To avoid cyclic explanations as in Example 2.11. Eelink et al. [10] extend Bochman’s causal theories [9]
to accommodate a set of external premises ℰ that do not require further explanation. Motivated by
the ideas in Aristotles’s Posterior Analytics, they additionally apply Principle 1. This leads them to the
set-up of causal systems:

Definition 2.15 (Causal System). A causal system CS ∶= (Δ, ℰ, 𝒪) consists of a causal theory Δ called
the causal knowledge of CS, a set of literals ℰ called the external premises of CS and a set of formulas 𝒪
called the observations of CS. The causal system CS is without observations if 𝒪 = ∅. Otherwise, the
causal system CS observes something. The causal system CS applies default negation if every negative
literal ¬𝑝 for 𝑝 ∈ 𝔓 is an external premise, i.e., ¬𝑝 ∈ ℰ and no external premise is an effect of a causal rule
in Δ. Further, the system CS is atomic if Δ is an atomic causal theory.
The causal theory Δ(CS) ∶= Δ ∪ {𝑙 ⇒ 𝑙 ∣ 𝑙 ∈ ℰ} is called the explanatory closure of CS. A causally

founded explanation is an explanation 𝜆 ⇛Δ(CS) 𝑙 such that 𝜆 ⊆ ℰ.
A causally founded world 𝜔 is a world such that 𝜔 ⊧ 𝒪 and for every literal 𝑙 the following formaliza-

tions of Principles 2 and 3 are satisfied:

Formalization of Principle 2:
If there exists a causally founded explanation 𝜔 ∩ ℰ ⇛Δ(CS) 𝑙, then 𝑙 ∈ 𝜔.
Formalization of Principle 3:
If 𝑙 ∈ 𝜔, then there exists a causally founded explanation 𝜔 ∩ ℰ ⇛Δ(CS) 𝑙.

Eelink et al. [10] argue that causally founded explanations can be used to formalize Principle 1.

Formalization 1 (Principle 1). All causal explanations 𝜆 ⇛Δ(CS) 𝑙 are causally founded.

Example 2.13. Example 1.4 gives rise to the causal system with default negation and without ob-
servations, defined as CS ∶= (Δ, ℰ, ∅), where Δ ∶= {𝑓1 ⇒ 𝑓2, 𝑓2 ⇒ 𝑓1} is an atomic causal theory
and ℰ ∶= {𝑠𝑓𝑖, ¬𝑠𝑓𝑖, ¬𝑓𝑖}𝑖=1,2 the set of external premises. The explanatory closure Δ(CS) of CS coin-
cides with the causal theory in Example 2.10. Note that the cyclic explanations from Example 2.11 are not
causally founded. Hence, the world 𝜔 in Example 2.12 is not causally founded.

3. Problem Statement

Example 1.4 shows that abductive logic programming under the causal model semantics can yield
counterintuitive results in the presence of cyclic causal relationships. From the perspective of logic
programming, such issues are typically addressed by applying the stable model semantics of Gelfond
and Lifschitz [15]. However, it remains an open question whether this approach admits a causally
meaningful interpretation that accounts for interventions.



4. Results

Throughout this section, we fix a propositional alphabet𝔓. We begin by introducing the Bochman trans-
formation, which identifies abductive logic programs with causal systems featuring default negation [10],
as defined in Definition 2.15.

Informally, the Bochman transformation interprets clauses ℎ ← 𝑏1 ∧ … ∧ 𝑏𝑛 as “𝑏1 ∧ … ∧ 𝑏𝑛 causes ℎ,”
treats the abducibles as external premises whose explanations lie beyond the given scope, and regards
the integrity constraints as observations.

Definition 4.1 (Bochman Transformation). The Bochman transformation of an abductive logic
program 𝒫 ∶= (P, 𝔄, IC) is the causal system with default negation CS(𝒫 ) ∶= (Δ, ℰ, 𝒪),
where Δ ∶= {body(𝐶) ⇒ head(𝐶) ∣ 𝐶 ∈ P}, ℰ ∶= 𝔄 ∪ {¬𝑝 ∣ 𝑝 ∈ 𝔓}, and 𝒪 ∶= IC.

Example 4.1. Let 𝒫 be the abductive logic program in Example 1.4. The causal system in Example 2.13 is
the Bochman transformation CS(𝒫 ) of 𝒫.

Let 𝒫 ∶= (P, 𝔄, IC) be an abductive logic program. We show that the stable models of 𝒫 corre-
spond to the causally founded worlds of its Bochman transformation CS(𝒫 ) ∶= (Δ, ℰ, 𝒪). Together
with Formalization 1 and Definition 2.15, this supports that the stable model semantics follows from
Principles 1, 2, and 3.

We begin by relating unfounded sets to explainability in causal theories.

Definition 4.2 (Internal and External Explanations). Let Δ be an atomic causal theory, 𝜔 a model of the
propositional theory obtained by reading the causal rules in Δ as logical implications, and 𝐼 ⊆ 𝜔 a set of
positive literals true in 𝜔.

An 𝐼-external explanation is an expression of the form 𝜆 ⇛Δ 𝑙, where 𝑙 ∈ 𝐼 and 𝜆 is a set of literals that
are true in 𝜔 and do not belong to 𝐼. An 𝐼-internal explanation is an expression of the form 𝜆 ⇛Δ 𝑙 that
is not 𝐼-external.

Let 𝜔 be a causally founded world of the Bochman transformation CS(𝒫 ). Definition 4.1 ensures
that a subset 𝐼 ⊆ 𝜔 of atoms true in 𝜔 can be unfounded with respect to any program extending the
underlying logic program P only if every rule 𝜆 ⇒ 𝑙 in Δ corresponds to an 𝐼-internal explanation 𝜆 ⇛Δ 𝑙.

Lemma 4.1. Let Δ, 𝜔 and 𝐼 be as in Definition 4.2. If every rule 𝜆 ⇒ 𝑙 in Δ corresponds to an 𝐼-internal
explanation 𝜆 ⇛Δ 𝑙, then every other explanation 𝜆′ ⇛Δ 𝑙′ is also 𝐼-internal as well.

Proof. By Definition 2.12, 𝜆′ ⇛Δ 𝑙′ follows from the rules in Δ through iterated applications of literal
cut, literal monotonicity and literal contradiction. So it suffices to show that as long as the rules in the
premises to those three inference rules are 𝐼-internal, then so is their consequence.

We use the notation of Definition 2.12.
For literal monotonicity, the statement is clear, since if 𝜆 ∪ 𝜆′ is a set of literals true in 𝜔 and not in 𝐼,

then so is its subset 𝜆.
Since 𝜔 is a structure, 𝑞 and ¬𝑞 can never both be true in 𝜔. Therefore, literals contradiction can

never yield an 𝐼-external explanation.
So it only remains to consider literal cut. Assume for contradiction that 𝜆 ∪ 𝜆′ ⇛Δ 𝑙′ is 𝐼-external

despite both premises 𝜆′ ⇛Δ 𝑙 and 𝜆 ∪ {𝑙} ⇛Δ 𝑙′ being 𝐼-internal. Then 𝜆 ∪ 𝜆′ is a set of literals true
in 𝜔 and not in 𝐼, and therefore so are 𝜆 and 𝜆′. Thus, since both premises are 𝐼-internal, the atom 𝑙
must not be in 𝐼 and also not true in 𝜔. However, this contradicts the fact that 𝜔 is a model of the
propositional theory corresponding to the rules of Δ. Indeed, note that (literal) cut, monotonicity and
contradiction are all true for propositional logic, where the triple arrow is read as logical implication.
Thus, since 𝜆 ⇛Δ 𝑙 is obtained from rules in Δ using those three axioms, 𝜔 is a model of 𝜆 → 𝑙 and of 𝜆
and thus of 𝑙, yielding the desired contradiction.

With Lemma 4.1 at hand, we can now prove our first result.



Theorem 4.2 (Bochman Transformation). The Bochman transformation is a bijection from abductive
logic programs to causal systems with default negation.

An abductive logic program 𝒫 ∶= (P, 𝔄, IC) has a stable model 𝜔 if and only if 𝜔 is a causally founded
world with respect to its Bochman transformation CS(𝒫 ) ∶= (Δ, ℰ, 𝒪).

Proof. By construction the Bochman transformation is a bijection between abductive logic programs
and causal systems with default negation. Since the integrity constraints are carried over unchanged
by the Bochman transformation as observations, we can assume without loss of generality that 𝒫 is
without integrity constraints.

First, we show that every stable model of P ∪ (𝜔 ∩ 𝔄) is a causal founded world ofCS(𝒫 ) =∶ (Δ, ℰ, ∅).
Let 𝜔 be such a stable model. We need to show for all literals 𝑙 that 𝜔 ∩ ℰ ⇛Δ(CS) 𝑙 if and only if 𝑙 ∈ 𝜔.

Note that since the rules in Δ correspond precisely to the clauses of the underlying logic program P,
the Clark completion of P coincides with the completion of the explanatory closure Δ(CS). Since every
stable model is also a supported model, the structure 𝜔 is a model of the completion of Δ(CS(𝒫 )).

For any set Λ of literals, we introduce the notation 𝒞(Λ) to indicate the set of all literals 𝑙 such
that Λ ⇛Δ(CS(𝒫 )) 𝑙. Thus, Theorem 2.3 states that 𝒞(𝜔) = 𝜔 and by literal monotonicity 𝒞(𝜔 ∩ ℰ) ⊆ 𝜔.
It remains to show that 𝜔 ⊆ 𝒞(𝜔∩ℰ), or, in other words, that 𝐼 ∶= 𝜔∖𝒞(𝜔∩ℰ) = ∅. Note first that since
all negated literals are in ℰ, 𝐼 is a set of positive literals. We show that if it were non-empty, 𝐼 were an
unfounded set. Assume that 𝐼 is not unfounded. Then, there would be a 𝑝 ∈ 𝐼 and a clause 𝑝 ← 𝑏1, … , 𝑏𝑛
such that all of 𝑏1, … , 𝑏𝑛 are in 𝜔 ∖ 𝐼 = 𝒞(𝜔 ∩ ℰ). However, this implies that 𝜔 ∩ ℰ ⇛Δ(CS(𝒫 )) 𝑏𝑖
for 𝑖 ∈ 1, … , 𝑛 and therefore by 𝑛-fold iteration of the (literal) cut, that 𝜔 ∩ ℰ ⇛Δ(CS(𝒫 )) 𝑝 and thus
that 𝑝 ∈ 𝒞 (𝜔 ∩ ℰ). This in turn contradicts 𝑝 ∈ 𝐼, and thus concludes the proof that 𝐼 = ∅ since stable
models contain no non-empty unfounded sets of atoms. Overall, we have shown that 𝒞(𝜔 ∩ ℰ) = 𝜔
and therefore that 𝜔 is a causally founded world of CS(𝒫 ).

We turn to the converse direction, showing that every causally founded world of CS(𝒫 ) is a stable
model of 𝒫. By Theorem 2.3, every causally founded world of CS(𝒫 ) is a model of the propositional
theory corresponding to the clauses of P.

So it remains to show that 𝜔 has no unfounded sets of atoms with respect to P ∪ (𝜔 ∩ 𝔄). Assume it
does have such a set, say 𝐼.

As 𝜔 is a causally founded world, we obtain 𝜔 ∩ ℰ ⇛Δ(CS(𝒫 )) 𝑝 for any 𝑝 ∈ 𝐼. Since every abducible
atom true in 𝜔 corresponds to a fact of P ∪ (𝜔 ∩ 𝔄), the unfounded set 𝐼 must be disjoint from 𝔄 and
thus from ℰ. Therefore, 𝜔 ∩ ℰ ⇛Δ(CS(𝒫 )) 𝑝 is 𝐼-external.

By Lemma 4.1, this implies that one of the rules of Δ(CS(𝒫 )) is 𝐼-external and thus that 𝐼 is not an
unfounded subset of 𝜔.

This concludes the proof that 𝜔 is a stable model of P ∪ (𝜔 ∩ 𝔄) as claimed.

According to Theorem 4.2, Principles 1, 2, and 3, together with Formalization 1 and Definition 2.15,
entail that a causal interpretation of abductive logic programming necessarily yields the stable model
semantics of Gelfond and Lifschitz [15]. This raises the question of whether every abductive logic
program admits such a causal interpretation.

Example 4.2. Let 𝑒 denote the event that a farmer is ecological, and ℎ the event that it is hot. Further, let 𝑠
denote that pests survive the weather, 𝑝 that there are pests in the field, and 𝑡 that the farmer applies toxin.

Assume pests survive if it is hot. If no toxin is applied, pests remain; toxin is applied if pests are present and
the farmer is not ecological. These relations define an abductive logic program𝒫 with abducibles𝔄 ∶= {ℎ, 𝑒}
and rules P:

𝑡 ← 𝑝, ¬𝑒, 𝑝 ← ¬𝑡, 𝑠, 𝑠 ← ℎ.

The program 𝒫 has no stable model with explanation 𝜖 ∶= {ℎ}. Hence, it concludes against the causal
direction, namely that it cannot be hot if the farmer is not ecological. This contradicts everyday intuition
as well as Principle 4.



We argue that to represent causal knowledge, an abductive logic programmust also satisfy Principle 4,
as explored by Williamson [13] in the context of Bayesian networks. In abductive logic programming,
we interpret Principle 4 as the following semantic constraint:

Formalization 2 (Principle 4). Let 𝒫 ∶= (P, 𝔄, IC) be a consistent abductive logic program. For a
set 𝑆 ⊆ 𝔓 of propositions, let 𝔓>𝑆 denote the set of all propositions 𝑞 ∉ 𝑆 that are descendants in the
dependency graph 𝐺 ∶= graph(P) of some proposition in 𝑆. Finally, denote by P>𝑆 the program consisting
of all clauses 𝐶 ∈ P with head(𝐶) ∈ 𝔓>𝑆.
Then, 𝒫 satisfies Principle 4 if and only if for every set 𝑆 ⊆ 𝔓 and every 𝔓 ∖ 𝔓>𝑆-structure 𝜔, the

program P>𝑆,𝜔 ∶= P>𝑆 ∪ 𝜔 has at least one stable model; that is, it is not possible to falsify 𝜔 with P>𝑆.

Remark. Williamson [13] proposes Principle 4 in the context of maximum entropy as a weakening of the
Markov assumption in Bayesian networks [1]. Accordingly, the above formalization could be viewed as a
deterministic analogue of the Markov assumption.

Example 4.3. The program 𝒫 in Example 4.2 does not satisfy Principle 4.

We argue that every abductive logic program 𝒫 satisfying Principle 4 under the above formalization
admits a causal interpretation under the stable model semantics. This raises the question of whether 𝒫
can also be used to predict the effects of external interventions.

According to Pearl [1], the joint act of observing and intervening leads to counterfactual reasoning,
which lies beyond the scope of this contribution. Therefore, we restrict our interest to programs
without integrity constraints and argue that they admit a meaningful representation of interventions if
Principle 5 holds. Finally, the following result shows that Principle 4 implies Principle 5.

Theorem 4.3. Let 𝒫 ∶= (P, 𝔄, ∅) be an abductive logic program without integrity constraints that
satisfies Principle 4, and let i be an assigment on a set of propositions 𝑆 ⊆ 𝔓.
Define 𝔓<𝑆 ∶= 𝔓 ∖ (𝔓>𝑆 ∪ 𝑆), P<𝑆 ∶= {𝐶 ∈ P ∣ head(𝐶) ∈ 𝔓<𝑆} and 𝒫 <𝑆 ∶= (P<𝑆, 𝔄, ∅). Then, the

following are equivalent:

1. 𝜔<𝑆 = 𝜔 ∩ 𝔓<𝑆 for some stable model 𝜔 of 𝒫, i.e., 𝜔<𝑆 is a reduct of 𝜔.
2. 𝜔<𝑆 is a stable model of 𝒫 <𝑆.
3. 𝜔<𝑆 = 𝜔i ∩ 𝔓<𝑆 for some stable model 𝜔i of 𝒫i, i.e., 𝜔<𝑆 is a reduct of 𝜔i.

Proof. The proof rests on the splitting lemma [21]. For any set of propositions 𝑆 ⊆ 𝔓 denote
by 𝔓≥𝑆 ∶= 𝔓>𝑆 ∪ 𝑆. Let 𝒫 𝑆 be the set of all clauses with heads in 𝑆, and write P∗𝑆 for the set of
all clauses with heads in 𝔓∗𝑆, where ∗ ∈ {<, ≥, >}. Finally, set 𝒫 ∗𝑆 ∶= (P∗𝑆, 𝔄, ∅).

Let 𝜔 be a world. By abuse of notation, for an abductive logic program 𝒬 ∶= (𝑄, 𝔅, ∅) we denote the
logic program 𝑄 ∪ (𝜔 ∩ 𝔅) also by 𝒬.

We first show the equivalence of 2 and 3, that stable models of 𝒫 <𝑆 are precisely the reducts of stable
models of 𝒫i. Note first that 𝒫 <𝑆 = 𝒫 <𝑆

i . Now consider the splitting (𝒫 <𝑆
i , 𝒫 𝑆

i , 𝒫
>𝑆
i ). This is indeed

a splitting, since after intervention the propositions in 𝑆 have no ancestors at all. Therefore, every
reduct of a stable model of 𝒫i to 𝔓<𝑆 is a stable model of 𝒫 <𝑆

i = 𝒫 <𝑆. For the other direction, let 𝜔 be
a stable model of 𝒫 <𝑆 = 𝒫 <𝑆

i . Since 𝒫 >𝑆,𝜔
i consists only of facts, it clearly has a stable model, say 𝜔𝑆.

By assumption, the program 𝒫 >𝑆,𝜔𝑆 = 𝒫 >𝑆,𝜔𝑆
i has a stable model, which by the splitting lemma is also

a stable model of 𝒫i and extends 𝜔.
Now we turn to the equivalence of 1 and 2. Note first that for any 𝑆, (𝒫 <𝑆, 𝒫 ≥𝑆) is a splitting of 𝒫.

Therefore, every reduct of a stable model of 𝒫 to 𝔓<𝑆 is a stable model of 𝒫 <𝑆.
So let 𝜔 be such a stable model of 𝒫 <𝑆. We need to show that 𝜔 can be extended to a stable model

of 𝒫. Denote 𝔓<𝑆 by 𝑆′. We note that 𝑆′ is closed under predecessors since 𝔓≥𝑆 is clearly closed under
successors. We employ the splitting (𝒫 𝑆′ , 𝒫 ∖ (𝒫 𝑆′ ∪ 𝒫 >𝑆′), 𝒫 >𝑆′). Note that the vocabularies used
in 𝒫 𝑆′ and in 𝒫 ∖ (𝒫 𝑆′ ∪ 𝒫 >𝑆′) are disjoint, since if a head occurring in 𝒫 ∖ (𝒫 𝑆′ ∪ 𝒫 >𝑆′) would be a
successor of a proposition in 𝑆′, it would lie in 𝔓>𝑆′ , and 𝑆′ is closed under predecessors. Since if the
vocabularies of two logic programs are disjoint, the stable models of their union are precisely the unions



of their stable models and 𝒫 is consistent (therefore 𝒫 ∖ (𝒫 𝑆′ ∪ 𝒫 >𝑆′) has at least one stable model),
every stable model of 𝒫 𝑆′ extends to a stable model of 𝒫 ∖ 𝒫 >𝑆′ . The result now follows immediately
from Formalization 2.

Finally, we obtain that stratified abductive logic programs under the stable model semantics satisfy
Principle 4, as formulated in Formalization 2.

Theorem 4.4. Every stratified abductive logic program satisfies Principle 4.

Proof. If𝒫 ∶= (P, 𝔄, IC) is stratified, then so isP>𝑆,𝜔 for every S ⊆ 𝔓 and every 𝑆-structure𝜔. Therefore,
the program P>𝑆,𝜔 has (precisely) one stable model. □

5. Conclusion and Related work

Let𝒫 ∶= (P, 𝔄, IC) be an abductive logic program. This work proposes a causal interpretation of𝒫 that
reads each clause ℎ ← 𝑏1, … , 𝑏𝑛 ∈ P as “𝑏1 ∧ ⋯ ∧ 𝑏𝑛 causes ℎ,” interprets the abducibles 𝔄 as external
premises with explanations beyond a given scope, and treats the integrity constraints IC as observations.
Theorem 4.2 then shows that Principles 1–3, as formulated in Formalization 1 and Definition 2.15, entail
the stable model semantics [15].

However, Example 4.2 illustrates that general programs may violate Principle 4 and, therefore, do not
admit a causal interpretation.

Fortunately, Theorem 4.4 confirms that stratified programs respect this principle, supporting their
causal interpretability under the stable model semantics.

In the absence of observations (IC = ∅), Theorem 4.3 shows that Principle 4 implies 5. Hence,
stratified programs without integrity constraints support reliable predictions under interventions.

Several authors have explored the relation between causal logic and logic programming. To our
knowledge, the earliest results appeared in the context of causally enriched versions of the situation
calculus [22, 23, 24]. McCain [25] and Lin and Wang [26] translate causal constraints of such languages
into disjunctive logic programs with classical negation. McCain’s transformation [25] is extended to
a broader class of causal theories, including first-order ones, by Ferraris et al. [27]. This line of work
relies on classical negation, thus departing from the standard framework of negation as failure. Its aim
is to make causal theories executable, rather than to provide a causal semantics for logic programs.

Conversely, some authors have investigated how logic programs themselves might admit a causal
interpretation. This includes work by Giunchiglia et al. [28] and Bochman [29], who, under the
stable model semantics, translate a logic programming clause of the form 𝑐 ← 𝑎, ¬𝑏⃗ into the causal
rule ⋀¬𝑏⃗ ⇒ (⋀𝑎 → 𝑐). Compared to the Bochman transformation in Definition 4.1, which yields
the rule 𝑎, ¬𝑏⃗ ⇒ 𝑐, this formulation is more difficult to interpret. In particular, as noted by Eelink et
al. [10, §2.2.2], the use of embedded logical implication within a causal reasoning framework is far less
transparent than the use of ordinary propositions. This formulation also implies that logic programs
correspond only to causal rules of a highly specific syntactic form. From this perspective, logic programs
could not express causal dependencies between positive atoms, which would severely limit their causal
expressiveness. Moreover, to our knowledge, these works do not address the feasibility of modeling
interventions, nor do they consider Principles 1, 4 and 5.

The Bochman transformation in Definition 4.1 maps a fact ℎ to a rule of the form ⊤ ⇒ ℎ, whose
interpretation remains open [10, Remark 1.1]. Future work should investigate suitable causal readings of
such rules, identify the class of programs satisfying Principle 4, and extend the framework to disjunctive
programs. While this work addresses whether a program can meaningfully represent the effect of all
interventions, it remains to be explored when a program contains sufficient information to represent
particular interventions, and whether Principle 5, appropriately formalized, is in fact equivalent to
Principle 4.
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