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Abstract
R2RML is the W3C-recommended mapping language for defining declarative, customized mappings from relational
databases to knowledge graphs, particularly in data integration and schema transformation scenarios. R2RML,
like other mapping languages, enables viewing existing relational data in RDF, expressed in a structure and
target vocabulary of the mapping author’s choice. Despite its broad adoption and plethora of extensions, the
complete semantics of R2RML have not been concretely formalized so far. In this paper, we provide a declarative,
computable, and rule-based formalization of R2RML through Datalog. We formally define the syntax of R2RML,
provide a translation of its semantics into a Datalog program that can be used to evaluate RDF graphs, and
discuss the associated complexity. The Datalog program defines output relations for the correct set of triples and
quadruples, given any relational data as input relations. We validate the accuracy of our Datalog-based semantics
by executing the R2RML test cases using a prototype implementation based on our approach. Our work lays the
groundwork for further investigation into the properties and extensions of R2RML, unlocks the various benefits
of Datalog reasoning in RDF generation, and introduces a promising approach for generating RDF graphs using
any out-of-the-box Datalog reasoner.
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1. Introduction

Over the years, Ontology-Based Data Access (OBDA) systems have proved their value in both industry
and academia [1] in complex data integration environments by providing access to raw data through
a conceptual layer in the form of a knowledge graph (KG). An OBDA system structures data access
through an ontology [1], which is a formal structure that represents classes, properties, and constraints
within a domain. Mappings define the relationship between the data and the ontology by constructing
the knowledge graph from the data following the ontology. Mapping languages define how to generate
KGs from diverse data sources by providing the mappings to an OBDA system. If the data sources
are relational databases (RDBs), an OBDA system has three main components: the relational data, the
ontology, and the mappings that construct the KG from the relational data following the ontology.

While RDF graphs are the widely adopted representation for building KGs, in 2012, the RDB2RDF
W3C Working Group published two W3C recommendations for mapping relational data to RDF graphs:
a direct mapping [2] and a language for defining customized mappings [3], the RDB to RDF Mapping
Language (R2RML) [4]. In the direct mapping of a database, the structure of the resulting RDF graph
directly reflects the database structure, and the target RDF vocabulary directly reflects the names of
database schema elements. To the contrary, in the customized mapping of a database, mapping authors
define customized views over the relational data, expressed in a structure and target vocabulary of
their choice. R2RML mappings define how each schema element is represented as RDF triples (subject,
predicate, object). An R2RML processor then executes these mappings to construct RDF graphs.

Although the two W3C recommendations were published together, only the formal semantics of
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direct mapping are concretely defined [5]. No detailed formalization of R2RML exists so far, despite the
proposal of several alternatives and extensions over R2RML [3]. There are works formalizing partial
fragments of R2RML: [6] hints at an R2RML formalization, but only introduces one rule example without
describing the semantics; [7, 8, 9] formalized simpler versions of R2RML as part of SPARQL-to-SQL
translations without focusing on R2RML semantics; [10] formalized a reduced version of R2RML as
part of mapping patterns optimization without explaining how R2RML semantically operates. These
works are discussed in Section 2. This lack of formal semantics hindered further research on R2RML;
for example, the correctness of the optimizations that operate on the full R2RML language cannot be
proven, only on some parts of the language [10]. Last, performing precise comparisons between R2RML
and its alternatives and extensions and identifying their differences is challenging.

Contributions In this paper, we present a declarative, rule-based formalization of R2RML that
combines both syntactic and semantic aspects. Our goal is to provide precise, unambiguous, and
declarative definitions and notations for all the concepts and structures of R2RML through a Datalog
program [11]. Our Datalog program generates RDF graphs through reasoning, given any ‘out-of-the-
box’ Datalog reasoner, which enables the derivation of implicit knowledge that may not be directly
present in the data. Having Datalog rules allows for immediate execution. This approach can, in theory,
enable optimizations of rule execution (relying on long-standing Datalog research), reduce redundancy,
and facilitate the extension of rules with additional features (e.g., access control, provenance tracking,
probabilities, etc.).

We provide a prototype implementation that shows the correctness of our semantics in gener-
ating RDF graphs. We demonstrate the reasonable efficiency of our Datalog translation by providing
complexity results and conduct validation experiments to assess the correctness of our R2RML
Datalog-based semantics, by successfully executing the W3C R2RML test cases [12] using our prototype.

Our work serves as a declarative counterpart to the procedural algorithmic approach provided in
the W3C Recommendation Specification for R2RML [4], while our rule-based formal semantics can be
extended to formalize mapping languages that depend on R2RML, facilitating efficient comparisons
among them.

2. Related Work

We introduce the concept of mappings in OBDA systems. Then, we review related works on the
formalization of direct and customized RDB-to-RDF mappings, employed in the materialization and
virtualization of RDF graphs [3].

OBDA. In [1], mappings in an OBDA system adapt the mapping techniques in a Data Integration
System (DIS) [13]. According to [13], a DIS is a system that contains a global schema, a source schema,
and mappings that map the source schema to the global schema, as well as in the opposite direction. In
[1], the authors concluded that an OBDA system is a subset of a DIS, where the ontology provides the
global schema, the data source provides the source schema, and the mappings can only map in the
direction of the source schema to the global schema, the so-called GAV mappings (Global-As-View).

Following this, there are two methods for answering queries over RDF graphs resulting from applying
the mappings to the raw data and the ontology [1]. One is the Bottom-Up method, where the RDF graph
is fully materialized, and then queries to the ontology are answered on the materialized RDF graph.
Such an approach can be time-consuming, prone to redundancy, and require re-materializing the RDF
graph if the raw data is modified. The second is called the Top-Down method, where the RDF graph is
kept virtual. Upon querying the ontology, the query is translated to an SQL query with the guidance of
the virtual RDF graph. The SQL query is then delegated to the data source and executed over the data.
These two methods became the basis for the materialization and virtualization of RDF graphs [3].

Ontop. Ontop [14, 15, 16] is an OBDA system that adapts the concept of a virtualized RDF graph
as a high-level description of RDBs to the user. Despite being able to materialize and virtualize RDF
graphs, the Ontop system focuses on virtualizing RDF graphs and using them to answer queries on



top of the ontologies. Ontop supports two mapping languages to provide their GAV mappings, Ontop
mappings, and R2RML. Ontop mappings are expressed as input/output rules: the input consists of SQL
queries over an RDB, and the output is user-defined RDF triples aligned with an ontology. The Ontop
mapping language has a concrete theoretical formalization [15], where Datalog and Description logic
were employed to define its semantics; similar to this work for R2RML.

R2RML. Sequeda [6] presented initial Datalog rules describing the ontology of R2RML and its
logical mapping phase and highlighted the similarity relationship between the core of R2RML and
direct mapping with views allowed as input. The authors claimed in [6] that R2RML semantics can
be expressed through a fixed number of Datalog rules. However, no R2RML semantics are concretely
formalized. The Datalog rules in [6] only demonstrate the different combinations of the R2RML syntax;
they neither describe how R2RML operates nor are they executable. It is impossible to study the Datalog
rules claimed in the paper as they are not available. After contacting the authors, it was verified that
the work was discontinued, and the link for the paper is no longer available.

R2RML and GAV Mappings. Iglesias et al. [10] adapt optimization techniques for materializing RDF
graphs from various data sources as output to DIS, where the mappings are described using R2RML or
RML. In [10], the mappings are in the form of GAV rules described using Horn clauses with functions [11].
The authors relate these GAV rules to R2RML by showing which R2RML concepts belong to which GAV
rule. However, these rules do not describe how R2RML operates internally, nor can they be used to
execute R2RML. Moreover, these rules miss out on parts of R2RML as graph maps, datatypes, and term
types.

R2RML Specification Algorithm. An algorithmic procedural description of R2RML is provided
in Section 11 in the R2RML specification [4]. This algorithm details the process of generating an RDF
graph from an R2RML triples map. Being heavily nested, this algorithm gives the feeling of falling
down a rabbit hole of clicking through notions and subroutines. Initially, the algorithm generates RDF
terms with the wrong term types. These types are only corrected in the final steps of the algorithm,
which causes confusion. Such ambiguities in the algorithm led to inconsistent behavior of identical
R2RML functions across different R2RML implementations.

SPARQL to SQL with R2RML. In the setting of top-down query answering, several approaches
formalized SPARQL to SQL rewriting while considering the mappings [7, 9]. The authors in both ap-
proaches introduce and formalize a simpler “normalized” version of R2RML that assumes the following:
(i) shortcuts for constants and SQL are expanded, (ii) class definitions are replaced by predicate object
maps with type as predicate and the class as an object, (iii) predicate object maps with many predi-
cate/object maps are expanded into predicate object maps with one predicate map and one object map,
(iv) all referencing object maps have been replaced by a new triple map equivalent to the predicate
object map and joins are rather done in the effective SQL query of the logical table, and (v) all triple
maps with multiple predicate object maps are replaced by a set of equivalent triple maps with one
predicate object map.

Formalizing this normalized R2RML cannot be considered a complete formalization of R2RML. The
normalization ignores essential parts of R2RML, such as referencing object maps, graph maps, datatypes,
and language tags, and only focuses on parts of R2RML satisfying the goal of using R2RML in the
form of GAV mappings. It is ambiguous with this normalization what happens in case an object has
a language tag or datatype, or a subject map/predicate-object map has a graph map, or a referencing
object map has more join conditions.

Kontchakov et al. [7] formally present SPARQL to SQL rewriting with R2RML being a source of
the virtual RDF graph. Normalized R2RML mappings are formalized as GAV rules in Datalog syntax.
Rodriguez-Muro and Rezk [9] offer an SQL translation of the generated triples through the normalized
R2RML. Similar comments can be made on how that work compares to ours. In a nutshell, they
focus on SPARQL-to-SQL rewriting and formalize R2RML as GAV mappings, whereas we focus on a
comprehensive formalization of the real-world R2RML through an efficient and executable rule-based
approach. The formalization in [9] does not accurately capture the operational behavior of the R2RML
language and overlooks several components excluded in its normalized version. For instance, the
formalization rules may yield RDF graphs that violate R2RML compliance due to the omission of



IRI-safety conditions on template values.
Similar to [9], [7] employs the normalized R2RML to create virtual RDF graphs. A translation of

the triples generation in the normalized R2RML is provided in [7] to SQL, but no concrete general
formalization of R2RML is presented.

Priyatna et al. [8] presented Morph: a tool for generating Virtual RDF graphs over RDBs. Morph
supports answering SPARQL queries over virtual RDF graphs, by adapting a rewriting for SPARQL-
to-SQL queries with user-defined R2RML mappings. Their algorithm shows how SPARQL queries are
translated to SQL, considering arbitrary R2RML mappings. R2RML mappings are provided as functions
with triples as output. These triples are used as inputs to other functions that generate the SQL query.
R2RML is described as part of the SPARQL-to-SQL rewriting, but no formalization of R2RML is provided.

RML. RDF Mapping Language (RML) is a declarative mapping language that extends R2RML by
supporting various data sources as CSV and JSON [17]. RML is defined as a superset of R2RML with
additional features. Min Oo and Hartig proposed a language-agnostic algebra for capturing mapping
definitions [18]. They also introduced an algorithm to translate RML mappings into this algebra.
However, the translation relies on a simplified, normalized version of RML, similar to the mentioned
normalization of R2RML, and overlooks the IRI-safety conditions on template values, resulting in an
incomplete formalization of the mapping language. Furthermore, the translation currently does not
support RDBs, making it inapplicable for R2RML in its current state. Finally, although the approach
proposes optimization strategies for mapping plans, its practical feasibility and performance evaluation
remain unaddressed.

3. Preliminaries

This section provides brief overviews of Datalog and R2RML.

Datalog A Datalog program ∆ [11, 19] is a set of (possibly recursive) rules (Horn clauses) of the
form:

∀𝑥⃗.𝑞(𝑢⃗)← 𝑝1(𝑡1⃗), . . . , 𝑝𝑚(𝑡𝑚⃗).

where 𝑝1(𝑡1⃗), . . . , 𝑝𝑚(𝑡𝑚⃗) and 𝑞(𝑢⃗) are atoms with variables in 𝑥⃗, and relation names 𝑝1 . . . 𝑝𝑚 and 𝑞.
𝑡⃗ is a list of terms 𝑡1, . . . , 𝑡𝑛 such that each 𝑡𝑖 is either a variable or a constant. Also, each variable in
𝑞(𝑢⃗) occurs in some atom 𝑝𝑖(𝑡𝑖⃗) which guarantees safety. An atom 𝑝(𝑡⃗) is called a fact if every 𝑡 ∈ 𝑡⃗
is a constant. It is customary to omit the universal quantifiers for brevity. Every Datalog rule has a
Head 𝑞(𝑢⃗) and a Body 𝑝1(𝑡1⃗), . . . , 𝑝𝑚(𝑡𝑚⃗). An atom 𝑝(𝑡⃗) is called an intensional database atom (IDB) if
it occurs in the head of some rule 𝑟 ∈ ∆. Otherwise, 𝑝(𝑡⃗) is called an extensional database atom (EDB).
∆ is applied to a database 𝐷, where 𝐷 is a set of EDB facts initially assumed to be true. The output
𝛼(∆, 𝐷) is the IDB facts derived from applying the rules in ∆ on 𝐷. Databases typically conform to a
given schema which specifies the available EDB relation names and their arities.

The semantics of a Datalog program ∆ is evaluated over a database 𝐷, which initially contains a
set of EDB facts assumed true. A ground substitution replaces the variables in a rule with constants.
A match occurs when a ground substitution is applied on the body of a rule in ∆, and the resulting
facts are added to 𝐷. The rule is considered satisfied in ∆ if all its matches are added to 𝐷. The least
model 𝛼(∆, 𝐷) is the smallest set of facts containing 𝐷 that satisfies all the rules in ∆. We compute it
by repeatedly applying the immediate consequence operator, which adds to the current set of facts all
the heads of rules whose bodies matched facts already derived, until no more facts can be added.

R2RML The main component of R2RML mappings is Triples Maps that define how to generate RDF
triples: (Subject, Predicate, Object). The R2RML vocabulary, expressed through pre-defined IRIs with
the prefix rr, formally defines each triples map. A triples map has one Logical Table, one Subject Map,
and zero or more Predicate-Object Maps. The subject map defines how to generate unique identifiers
(URIs) used as the subject of all RDF triples generated from this triples map. A predicate-object map



has one or more Predicate Map(s), which define the rule that generates the URIs for the predicates.
Additionally, in every predicate-object map, a predicate map has one or more Object Map or/and one
or more Referencing-Object Map. A referencing object map has one Parent Triples Map, which is a
triples map. A parent triples map has zero or more Join Condition, where each join condition has
exactly one child value which is a column in the table of the triples map containing the referencing
triples map, and exactly one parent value which is the column from the logical table of the parent
triples map. The object map and referencing object map define how each triple’s object is generated.

The subject, predicate, and object maps are Term Maps that have one of the Term Types: (IRI,
Blank Node, Literal). A term map is either constant-valued that generates a constant, column-
valued that is the data value of a column in a logical table, or template-valued that is a valid string
template having one or more columns of a logical table. Listing 1 shows a simple example of an R2RML
mapping document with R2RML mappings.

<TriplesMap1> a rr:TriplesMap;
rr:logicalTable [ rr:tableName "Student" ];
rr:subjectMap [ rr:template "http://example.com/{Name}" ];
rr:predicateObjectMap [

rr:predicateMap [rr:constant foaf:name];
rr:objectMap [ rr:column "Name" ] ].

Listing 1: An R2RML Mapping Document Example.

4. Formal Definition of R2RML Syntax

R2RML [4] defines customized mappings for an RDB𝒟 over a schema𝒮 to an RDF graph𝑅𝐷𝐹𝑇∪𝑅𝐷𝐹𝑄,
where 𝑅𝐷𝐹𝑇 is a set of triples, each of the form (𝑠, 𝑝, 𝑜). 𝑅𝐷𝐹𝑄 is a set of triples with named graphs
(quadruples), each of the form (𝑠, 𝑝, 𝑜, 𝑔). In 𝑅𝐷𝐹𝑇 and 𝑅𝐷𝐹𝑄, 𝑠 is the subject, 𝑝 the predicate, 𝑜 the
object, and 𝑔 the named graph. An important restriction is that (𝑠, 𝑝, 𝑜, 𝑔) ∈ (𝐼∪𝐵)×𝐼×(𝐼∪𝐵∪𝐿)×𝐼 ,
where 𝐼 , 𝐵 and 𝐿 are RDF terms and stand for IRIs, blank nodes, and literals respectively. The semantics
of RDF are defined in [20]. In this section, we formalize the syntax of R2RML.

Logical Table An R2RML mapping refers to logical tables to retrieve data over the input database
schema 𝒮 . A logical table ℒ𝒯 is either a Base Table or View Name in 𝒮 , or a R2RML View that defines
a table by executing an SQL query on the input database. ℒ𝒯 always corresponds to an effective
SQL query producing the contents of the logical table. In the case of an R2RML view, this is clear by
definition; in the case of a base table or view name, the query is a simple SELECT ALL query.

Term Map A term map Term𝑚𝑎𝑝 over a logical table ℒ𝒯 is of the form (𝒱𝒯 , type, datatype, lantag)
such that:

• 𝒱𝒯 is a value term that is either a constant con , a column name col , or a template temp that
defines how to generate an RDF term. Here, temp is an alternating sequence of strings and
column names, having the form (𝑠, col1, 𝑠1, col2, 𝑠2, . . . , col𝑚, 𝑠𝑚) for 𝑚 ≥ 1.

• type is either IRI, Blank, Literal, or ⊥, the term type of the RDF term.

• datatype is a valid IRI representing the datatype, or undefined (⊥).

• lantag is either a defined valid language tag or undefined ⊥.

• if type ̸= Literal, then datatype and lantag must be ⊥.

• if type = Literal, then datatype =⊥ iff lantag ̸=⊥.



The notions of subject term map STmap , predicate term map PTmap , object term map OTmap , and
graph term map GTmap , are term maps with additional constraints on the value of type . For STmap we
have type = IRI, Blank, or ⊥. For PTmap or GTmap we have type = IRI or ⊥. For OTmap , there
are no restrictions.

Graph Map A graph map Gmap is a possibly-empty finite set of graph term maps GTmap .

Subject Map A subject map Smap overℒ𝒯 has the form (STmap ,CL,Gmap) where STmap and Gmap

are as above, and CL is a finite possibly-empty set of IRIs, which will be used as class names.

Predicate-Object Map An object map Omap is either an object term map OTmap as above, or a
referencing object map, to be defined soon below. Now a predicate-object map POmap over ℒ𝒯 is
a triple (𝒫ℳ,𝒪ℳ,Gmap) where Gmap is as above; 𝒪ℳ is a non-empty finite set of Omap (object
maps); and 𝒫ℳ is a non-empty finite set of PTmap (predicate term maps, see above).

Referencing Object Map A referencing object map RefOmap over ℒ𝒯 is a triple1 (Smap*,ℒ𝒯 *,𝒥 𝒞)
such that:

• Smap* is a subject map.

• ℒ𝒯 * is a logical source.

• 𝒥 𝒞 is a possible-empty finite set of join conditions, where each 𝑗𝑐 ∈ 𝒥 𝒞 is a pair of valid column
names (𝑐ℎ𝑖𝑙𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡) in ℒ𝒯 and ℒ𝒯 * respectively.

• if 𝒥 𝒞 = ∅ then ℒ𝒯 * = ℒ𝒯 .

R2RML Mappings R2RML mappings are defined in a so-called R2RML Mapping Documentℳ. Such
a document is interestingly an RDF graph in turtle syntax [21].ℳ is formed from a finite non-empty set
of triples maps. A triples map specifies rules for translating each row of a logical table to zero or more
RDF triples or quadruples. Formally, a triples map TM has the form (ℒ𝒯 ,Smap ,𝒫𝒪ℳ). Here, ℒ𝒯 is a
logical table to be mapped; Smap is a subject map over ℒ𝒯 , and 𝒫𝒪ℳ is a finite set of predicate-object
maps POmap over ℒ𝒯 .

We provide a summary of the R2RML syntax and the abbreviations used for each component in
Appendix 8. Next, we formalize the R2RML semantics.

5. Semantics of Evaluating R2RML Mappings

Letℳ be an R2RML mapping document designed for an RDB𝒟 that has a schema 𝒮 . In R2RML engines,
an R2RML processor generates an RDF graph 𝑅𝐷𝐹ℳ,𝒟 givenℳ and 𝒟. This RDF graph can be either
materialized or virtualized as part of an OBDA system. In our work, we aim to use Datalog reasoners as
R2RML processors. For each triples map 𝒯ℳ inℳ with a logical table ℒ𝒯 , we construct a Datalog
program ∆𝒯 ℳ and a database 𝐷ℒ𝒯 in what follows.

5.1. Table Facts

Abiteboul et al. [11] introduced a relational model for viewing RDBs in logic programming, by demon-
strating two approaches to express RDBs: the Named and the Unnamed approaches. SQL uses the
named approach, whereas Datalog uses the unnamed approach, so we define how we convert from
named to unnamed to avoid misunderstanding.

1In reality, we reference a parent triples map 𝒫𝒯 ℳ, but to avoid a circular definition we only introduce what is relevant in
𝒫𝒯 ℳ, i.e., the logical table and subject map.



Let 𝐴1, . . . , 𝐴𝑘 be the 𝑘 attributes (column names) of ℒ𝒯 , where we agree on a fixed order of the
attributes. For every tuple 𝑡 of table ℒ𝒯 in 𝒟, we have an EDB fact 𝑙𝑡(𝑎1, . . . , 𝑎𝑘) in 𝒟ℒ𝒯 , where
𝑎𝑖 = 𝑡(𝐴𝑖). Here, 𝑙𝑡 is the unique name give for ℒ𝒯 , used as an EDB atom name of arity 𝑘.

Example 1. Let ℒ𝒯 be the logical table for 𝒯ℳ described in Listing 1.

| Name |
---------
| Alice |
| Bob |

In this case, 𝐷ℒ𝒯 = {𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝐴𝑙𝑖𝑐𝑒), 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝐵𝑜𝑏)}, which are two EDB facts of the two rows in ℒ𝒯 .

5.2. Terms Evaluation Rules

Let Term𝑚𝑎𝑝 = (𝒱𝒯 , type, datatype, lantag) be a term map in 𝒯ℳ. We provide a set of rules
∆Term𝑚𝑎𝑝 ⊂ ∆𝒯 ℳ with auxiliary IDB atoms required in ∆𝒯 ℳ to evaluate the value term 𝒱𝒯 . Below,
𝑙𝑡(𝑥⃗) stands for the EDB atom 𝑙𝑡(𝑥1, . . . , 𝑥𝑘) with 𝑘 distinct variables. The rules now are the following.

• if 𝒱𝒯 is a constant con :

𝑒𝑣𝑎𝑙𝒱𝒯 (𝑥⃗, con)← 𝑙𝑡(𝑥⃗).

• if 𝒱𝒯 is a column name col , then let 𝑗 be the index of col in the order 𝑂𝑟 of column values of 𝑥⃗
in 𝑙𝑡(𝑥⃗):

𝑒𝑣𝑎𝑙𝒱𝒯 (𝑥⃗, 𝑥𝑗)← 𝑙𝑡(𝑥⃗), 𝑥𝑗 ̸= 𝑛𝑢𝑙𝑙.

• if 𝒱𝒯 is a template temp of the form (𝑠, col1, 𝑠1, col2, 𝑠2, . . . , col𝑛, 𝑠𝑛) for 𝑛 ≥ 1:

𝑒𝑣𝑎𝑙𝒱𝒯 (𝑥⃗, 𝑐𝑜𝑛𝑐𝑎𝑡(𝑠, 𝑦1, 𝑠1, 𝑦2, 𝑠2, . . . , 𝑦𝑛, 𝑠𝑛))← 𝑙𝑡(𝑥⃗), 𝑦1, 𝑦2 . . . 𝑦𝑛 ̸= 𝑛𝑢𝑙𝑙.

Here, for each 𝑘 ∈ {1, . . . , 𝑛}, variable 𝑦𝑘 equals to 𝑥𝑗 in 𝑥⃗, where 𝑗 is the index of col𝑘 in the
order 𝑂𝑟 of column values of 𝑥⃗ in 𝑙𝑡(𝑥⃗). Also, 𝑐𝑜𝑛𝑐𝑎𝑡 is a string concatenation function.

These rules construct different value terms from the term maps, depending on the type of 𝒱𝒯 . 𝑒𝑣𝑎𝑙𝒱𝒯
is a unique predicate name of the atom that evaluates 𝒱𝒯 . We assume IRI-safe versions for the column
values if type = IRI. In cases where this condition cannot be guaranteed, each selected column in the
head of the rules can instead be wrapped in a function IRISafe , which ensures an IRI-safe version of
the column value according to Section 7.3 of the R2RML specification2.

Using functions and built-in predicates in Datalog rules extends beyond pure Datalog. However,
such extensions are well-known in the literature [22] and are supported by many modern Datalog
engines [23] to enhance expressivity and usability. In our construction, functions are applied only to
variables in the heads of rules, and built-in predicates are only applied to variables that are bound in
positive body atoms, ensuring rule safety [11].

Example 2. Let 𝒯ℳ be the triples map in Listing 1, we start the construction of the Datalog program
∆𝒯 ℳ with the rules evaluating each value term in 𝒯ℳ as follows:

𝑒𝑣𝑎𝑙T(𝑥0, 𝑐𝑜𝑛𝑐𝑎𝑡(“http://example.com/”, 𝑥0))← 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥0).

𝑒𝑣𝑎𝑙“foaf:name”(𝑥0, “foaf:name”)← 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥0).

𝑒𝑣𝑎𝑙𝑁𝑎𝑚𝑒(𝑥0, 𝑥0)← 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥0).

where T is the template “http://example.com/{Name}”.
2https://www.w3.org/TR/r2rml/#from-template
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Next, we further add rules to ∆Term𝑚𝑎𝑝 for generating the RDF term for a term map Term𝑚𝑎𝑝 having
a value term 𝒱𝒯 based on the term type type . We use the auxiliary IDB atoms, defined in the earlier
value-term rules, as input to these rules.

• if type = IRI:
𝑒𝑣𝑎𝑙𝑇𝑒𝑟𝑚𝐼𝑅𝐼(𝑥⃗, 𝑐𝑜𝑛𝑐𝑎𝑡(“<”, 𝑦, “>”))← 𝑒𝑣𝑎𝑙𝒱𝒯 (𝑥⃗, 𝑦).

• if type = Blank:

𝑒𝑣𝑎𝑙𝑇𝑒𝑟𝑚𝐵𝑙𝑎𝑛𝑘(𝑥⃗, 𝑐𝑜𝑛𝑐𝑎𝑡(“_:”, 𝑦))← 𝑒𝑣𝑎𝑙𝒱𝒯 (𝑥⃗, 𝑦).

• if type = Literal:

𝑒𝑣𝑎𝑙𝑇𝑒𝑟𝑚𝐿𝑖𝑡𝑒𝑟𝑎𝑙(𝑥⃗, 𝑐𝑜𝑛𝑐𝑎𝑡𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒,𝐿𝑖𝑡𝑒𝑟𝑎𝑙(“
′′ ”, 𝑦, “ ′′ ”))← 𝑒𝑣𝑎𝑙𝒱𝒯 (𝑥⃗, 𝑦).

Besides the normal concatenation function, 𝑐𝑜𝑛𝑐𝑎𝑡𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒,𝑙𝑎𝑛𝑡𝑎𝑔 is a function that concatenates the
term map with its associated datatype or language tag in case they exist, following the RDF term
generation rules in the R2RML specification3. 𝑒𝑣𝑎𝑙𝑇𝑒𝑟𝑚𝑇𝑦𝑝𝑒 is a unique predicate name of the atom
evaluating the RDF term for Term𝑚𝑎𝑝.

Example 3. We embed ∆𝒯 ℳ from Ex. 2 with the RDF term generation rules according to their term type:

𝑒𝑣𝑎𝑙𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝑅𝐼(𝑥0, 𝑐𝑜𝑛𝑐𝑎𝑡(“<”, 𝑦, “>”))← 𝑒𝑣𝑎𝑙T(𝑥0, 𝑦).

𝑒𝑣𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐼𝑅𝐼(𝑥0, 𝑐𝑜𝑛𝑐𝑎𝑡(“<”, 𝑦, “>”))← 𝑒𝑣𝑎𝑙“foaf:name”(𝑥0, 𝑦).

𝑒𝑣𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝐿𝑖𝑡𝑒𝑟𝑎𝑙(𝑥0, 𝑐𝑜𝑛𝑐𝑎𝑡𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒,𝐿𝑖𝑡𝑒𝑟𝑎𝑙(“ ′′”, 𝑦, “ ′′”))← 𝑒𝑣𝑎𝑙Name(𝑥0, 𝑥0).

5.3. RDF Graph Generation Rules

With the RDF terms generated, we now construct the set of rules ∆𝑅𝐷𝐹 ⊂ ∆𝒯 ℳ that generates the
RDF Graph.

Let 𝒯ℳ = (ℒ𝒯 ,Smap ,𝒫𝒪ℳ) be a triples map with a subject map Smap = (STmap , CL, Gmap),
and for each predicate object map POmap ∈ POM , POmap = (𝒫ℳ, 𝒪ℳ, Gmap*). Also, let
Gmap(𝒯ℳ) = Gmap ∪Gmap* be the set of all graph maps in Smap and every POmap .

Before defining the rules in ∆𝑅𝐷𝐹 , we define the atoms notations Subject, Predicate, Object, and
Graph using the auxiliary atoms in the defined RDF term generating rules as follows.

Subject Let STmap ∈ 𝑆𝑚𝑎𝑝 be a subject term map with a term type type (Section 4), the value
of the notation [Subject(Smap)] is an atom with a name tailored to STmap , determined accord-
ing to the term type type :

• [Subject(Smap)] = 𝑒𝑣𝑎𝑙ST𝑚𝑎𝑝,𝐼𝑅𝐼(𝑥⃗, 𝑠) if type = IRI or ⊥

• [Subject(Smap)] = 𝑒𝑣𝑎𝑙ST𝑚𝑎𝑝,𝐵𝑙𝑎𝑛𝑘(𝑥⃗, 𝑠) if type = Blank

Predicate For every predicate term map PTmap ∈ 𝒫ℳ, we introduce the notation Predicate
representing an atom with a name tailored to PTmap and POmap) such that:

[Predicate(PTmap ,POmap)] = 𝑒𝑣𝑎𝑙PT𝑚𝑎𝑝,𝐼𝑅𝐼(𝑥⃗, 𝑝)

Object For every object map Omap ∈ 𝒪ℳ, if Omap is an object term map OTmap , we determine the
notation Object according to type of OTmap as follows:

• [Object(Omap ,POmap)] = 𝑒𝑣𝑎𝑙OT𝑚𝑎𝑝,𝐼𝑅𝐼(𝑥⃗, 𝑜) if type = IRI

3https://www.w3.org/TR/r2rml/#generated-rdf-term
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• [Object(Omap ,POmap)] = 𝑒𝑣𝑎𝑙OT𝑚𝑎𝑝,𝐵𝑙𝑎𝑛𝑘(𝑥⃗, 𝑜) if type = Blank

• [Object(Omap ,POmap)] = 𝑒𝑣𝑎𝑙OT𝑚𝑎𝑝,𝐿𝑖𝑡𝑒𝑟𝑎𝑙(𝑥⃗, 𝑜) if type = Literal or type =⊥

Otherwise, if Omap is a referencing object map RefOmap = (Smap*,ℒ𝒯 *,𝒥 𝒞), then Object is
defined according to 𝒥 𝒞 such that:

• if 𝒥 𝒞 = ∅, then [Object(Omap ,POmap)] = [Subject(Smap*)]

• if 𝒥 𝒞 ≠ ∅, then for every join condition 𝑗𝑐 ∈ 𝒥 𝒞 with 𝑗𝑐 = (𝑐𝑜𝑙𝑐, 𝑐𝑜𝑙𝑝) where 𝑐𝑜𝑙𝑐 is a column
name in ℒ𝒯 and 𝑐𝑜𝑙𝑝 is a column name in ℒ𝒯 *, we define JoinCond(𝑗𝑐) as a conjunction of
atoms:

[JoinCond(𝑗𝑐)] = 𝑒𝑣𝑎𝑙𝑐𝑜𝑙𝑐(𝑥⃗, 𝑧), 𝑒𝑣𝑎𝑙𝑐𝑜𝑙𝑝(𝑦⃗, 𝑧)

where 𝑧 is a fresh variable introduced in both atoms to ensure that the column values in 𝑐𝑜𝑙𝑐 and
𝑐𝑜𝑙𝑝 are the same. To obtain the values of the columns 𝑐𝑜𝑙𝑐, 𝑐𝑜𝑙𝑝, we need to ensure the presence
of the following two rules in ∆𝒯 ℳ:

𝑒𝑣𝑎𝑙𝑐𝑜𝑙𝑐(𝑥⃗, 𝑥𝑖)← 𝑙𝑡(𝑥⃗).

𝑒𝑣𝑎𝑙𝑐𝑜𝑙𝑝(𝑦⃗, 𝑦𝑗)← 𝑙𝑡𝑗(𝑦⃗).

Now we define the notation for the set 𝒥 𝒞 of all join conditions. Assuming that m is the number
of join conditions in 𝒥 𝒞, we define the notation JoinCond(𝒥 𝒞) as a conjunction of every join
condition in 𝒥 𝒞 such that:

[JoinCond(𝒥 𝒞)] =
𝑖=𝑚⋀︁
𝑖=1

JoinCond(𝑗𝑐𝑖)

Following this, we define the notation Object as a conjunction of atoms as follows:

[Object(Omap ,POmap)] = Subject(Smap*),JoinCond(𝒥 𝒞)

Graph For every graph term map GTmap ∈ Gmap𝒯 ℳ:

• if GTmap is defined within the subject map Smap :

[Graph(GTmap ,Smap)] = 𝑒𝑣𝑎𝑙GT𝑚𝑎𝑝,𝐼𝑅𝐼(𝑥⃗, 𝑜)

• if GTmap is defined in the predicate object map POmap :

[Graph(GTmap ,POmap)] = 𝑒𝑣𝑎𝑙GT 𝐼𝑅𝐼
𝑚𝑎𝑝(𝑥⃗, 𝑔)

With these notations defined, we introduce the rules in ∆𝑅𝐷𝐹 as follows.

Class Rules Let ∆𝑐𝑙𝑎𝑠𝑠 ⊂ ∆𝑅𝐷𝐹 be a set of rules that build the RDF graph in case of the existence of
class IRIs in Smap . For each class IRI 𝑐 ∈ CL, we encode it as an EDB atom named 𝑐𝑙𝑎𝑠𝑠, and build the
RDF graph accordingly as follows:

• if Gmap = ∅:

𝑇𝑟𝑖𝑝𝑙𝑒(𝑠, ‘rdf:type’, 𝑐)← [Subject(Smap)], 𝑐𝑙𝑎𝑠𝑠(𝑐).

• if Gmap ̸= ∅, then for each GTmap ∈ Gmap (Section 4):

𝑄𝑢𝑎𝑑𝑟𝑢𝑝𝑙𝑒(𝑠, ‘rdf:type’, 𝑐, 𝑔)← [Subject(Smap)], 𝑐𝑙𝑎𝑠𝑠(𝑐), [Graph(GTmap ,Smap)].



General RDF Rules Let PTmap and Omap be a predicate term map and an object map belonging to
a predicate object map POmap . We define a set of rules ∆𝑁 ⊂ ∆𝑅𝐷𝐹 as follows:

• if Gmap𝒯 ℳ = ∅:

𝑇𝑟𝑖𝑝𝑙𝑒(𝑠, 𝑝, 𝑜)← [Subject(STmap)], [Predicate(𝑃𝑇𝑚𝑎𝑝,POmap)], [Object(𝑃𝑇𝑚𝑎𝑝,POmap)].

• if Gmap𝒯 ℳ ̸= ∅, then for each GTmap ∈ Gmap𝒯 ℳ:

– if GTmap belongs to the subject map:

𝑄𝑢𝑎𝑑𝑟𝑢𝑝𝑙𝑒(𝑠, 𝑝, 𝑜, 𝑔)← [Subject(STmap)], [Predicate(𝑃𝑇𝑚𝑎𝑝,POmap)],

[Object(𝑃𝑇𝑚𝑎𝑝,POmap)], [Graph(GTmap ,Smap)].

– if GTmap belongs to the predicate object map:

𝑄𝑢𝑎𝑑𝑟𝑢𝑝𝑙𝑒(𝑠, 𝑝, 𝑜, 𝑔)← [Subject(STmap)], [Predicate(𝑃𝑇𝑚𝑎𝑝,POmap)],

[Object(𝑃𝑇𝑚𝑎𝑝,POmap)], [Graph(GTmap ,POmap)].

These rules generate triples and quadruples by associating each subject with the corresponding predi-
cates, objects, and named graphs as specified in the triples map.

Example 4. To finalize the construction of ∆𝒯 ℳ from Ex. 3, we embed ∆𝒯 ℳ with only one rule from
RDF generation rules as follows:

𝑇𝑟𝑖𝑝𝑙𝑒(𝑠, 𝑝, 𝑜)← 𝑒𝑣𝑎𝑙𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝑅𝐼(𝑥0, 𝑠), 𝑒𝑣𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐼𝑅𝐼(𝑥0, 𝑝), 𝑒𝑣𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝐼𝑅𝐼(𝑥0, 𝑜).

5.4. RDF Evaluation

To obtain 𝑅𝐷𝐹ℳ,𝒟 forℳ and 𝒟, we construct a Datalog program ∆ℳ and a database 𝐷ℳ such that:

• ∆ℳ =
⋃︀

𝒯 ℳ∈ℳ∆𝒯 ℳ, where ∆𝒯 ℳ denotes the Datalog program of the triples map 𝒯ℳ.

• 𝐷ℳ =
⋃︀

𝒯 ℳ∈ℳ𝐷ℒ𝒯 , where ℒ𝒯 is the logical table specified by 𝒯ℳ, and 𝐷ℒ𝒯 is the corre-
sponding set of EDB facts extracted from 𝒟.

The least model 𝛼(∆ℳ, 𝐷ℳ) (Section 3) contains the RDF graph 𝑅𝐷𝐹ℳ,𝒟 as a set of IDB facts of the
form 𝑅𝐷𝐹𝑄 ∪𝑅𝐷𝐹𝑇 , where 𝑅𝐷𝐹𝑄 and 𝑅𝐷𝐹𝑇 are subsets of 𝛼(∆ℳ, 𝐷ℳ) consisting of IDB facts
with predicate names 𝑄𝑢𝑎𝑑𝑟𝑢𝑝𝑙𝑒 and 𝑇𝑟𝑖𝑝𝑙𝑒, respectively.

Example 5. The least model 𝛼(∆ℳ, 𝐷ℳ) of ∆ℳ (Ex.4) and 𝐷ℳ (Ex. 1) has the RDF graph 𝑅𝐷𝐹ℳ,𝒟
in the form of the facts:

𝑇𝑟𝑖𝑝𝑙𝑒(<ex:Alice>, <foaf:name>, “Alice”), 𝑇 𝑟𝑖𝑝𝑙𝑒(<ex:Bob>, <foaf:name>, “Bob”)

5.5. Translation Complexity

We provide the size complexity of the translated Datalog program for R2RML mappings following our
approach.

Let 𝒯ℳ be a triples map with Smap and 𝒫𝒪ℳ. We compute the number of Datalog rules needed in
the Datalog program ∆𝒯 ℳ to compute the RDF graph of 𝒯ℳ as follows:

• For RDF graph generation, 1 rule is required for class RDF generation, and 𝑛𝑝𝑜 rules are needed
for general RDF generation, where 𝑛𝑝𝑜 = max(𝑛𝑝, 𝑛𝑜), where 𝑛𝑝 and 𝑛𝑜 denote the total number
of predicate maps and object maps in 𝒫𝒪ℳ, respectively.

• For Smap , 2 rules are required to generate the RDF term.



• For all predicate maps in 𝒫𝒪ℳ, 2𝑛𝑝 rules are needed to generate the RDF terms, where 𝑛𝑝 is
the number of predicate maps.

• For the object maps in 𝒫𝒪ℳ, the number of Datalog rules required is
∑︀𝑛𝑜

𝑖=1(2 + 𝑗𝑐𝑖), where 𝑛𝑜

denotes the number of object maps. Each object map requires two rules to generate the RDF term.
If the object map is a referencing object map, each join condition in that object map requires two
additional rules to be evaluated, where 𝑗𝑐𝑖 is the total number of join conditions for the 𝑖th object
map.

• Let 𝑛𝑔 be the number of graph maps in Smap ∪ 𝒫𝒪ℳ. The total number of rules needed to
generate the RDF term from these graph maps is 2𝑛𝑔 .

As a conclusion, the total number of rules 𝑅𝒯 ℳ for 𝒯ℳ can be computed through the following
equation:

𝑅𝒯 ℳ = 3 + 𝑛𝑝𝑜 + 2(𝑛𝑝 + 𝑛𝑜 + 𝑛𝑔) + 2

𝑛𝑜∑︁
𝑖=1

𝑗𝑐𝑖

We observe that the size of ∆𝒯 ℳ is at most polynomial in the size of 𝒯ℳ. As a conclusion, the size of
∆ℳ is polynomial in the size ofℳ.

6. R2RML Datalog Implementation

To validate the correctness and efficiency of our R2RML Datalog-based semantics, we developed a
prototype that utilizes the mappings and data parsers of RMLMapper [24]: a Java tool that generates
RDF graphs for RML [17] and also supports R2RML. With RMLMapper’s parsers, our prototype can
translate any input RDB and R2RML mappings into a Datalog program ready for execution.
R2RML to Datalog translation. Our prototype processes any R2RML mapping documentℳ and

translates it to a corresponding Datalog program. In addition, the prototype translates the specified
RDB tables inℳ into corresponding facts files. Once generated, the Datalog program and facts files can
be passed to any ‘out-of-the-box’ Datalog reasoner, which generates the corresponding RDF graph of
ℳ through reasoning. Our prototype is available in the Github repository (https://github.com/dtai-kg/
R2RML2Datalog-Translator).
Datalog execution. We rely on Soufflé as a Datalog reasoner due to its efficiency, scalability, and

broad support of user-defined functions [25, 23], which are required in our semantics. Soufflé compiles
Datalog programs into C++ code, which enables parallel execution. Soufflé supports user-defined
functions in the form of C++ code wrapped in C functions, however, Soufflé does not support RDF
concepts. We implemented the required user-defined functions to ensure the proper execution of our
Datalog program in Soufflé. The functions are available in the GitHub repository of our prototype.

Validation. To evaluate the correctness of our R2RML Datalog-based semantics in generating RDF
graphs, we executed all R2RML test cases [12] on our prototype with Soufflé as a Datalog reasoner,
and MySQL as the RDBS to create the logical tables for all test cases. From the 62 official R2RML
test cases (TCs), 14 TCs assess the correctness of how the tool parses the input R2RML mapping
document and data. However, since our prototype is built on RMLMapper’s parser, these 14 TCs are
not relevant as they are covered by RMLMapper; we refer to the R2RML implementation report in
[26]. Our prototype successfully generated the correct RDF graph in all of the 48 TCs used. Our
GitHub repository (https://github.com/dtai-kg/R2RML2Datalog-Tests) contains a folder for each of the
48 test cases (TCs). Each folder includes: the R2RML mapping document, the corresponding translated
Datalog program in Soufflé syntax, the RDB in MySQL syntax, its corresponding facts files as input for
Soufflé, the expected RDF output, and the actual output produced by Soufflé reasoning.

https://github.com/dtai-kg/R2RML2Datalog-Translator
https://github.com/dtai-kg/R2RML2Datalog-Translator
https://github.com/dtai-kg/R2RML2Datalog-Tests


7. Conclusions and Future Work

In this work, we provided the complete formal syntax formalization of R2RML. We presented a translation
of R2RML mappings to Datalog programs that captures the semantics of R2RML, and discussed its
complexity. In addition, we developed a prototype implementation that translates an RDB and a set
of R2RML mappings into EDB facts and a Datalog program. These EDB facts and Datalog program
generate the intended RDF graph through reasoning with any ‘out-of-the-box’ Datalog reasoner that
supports user-defined functions. We validated the correctness of our R2RML semantics by executing all
official R2RML test cases using our prototype implementation.

Our work paves the way for conducting theoretical research on R2RML and studying its properties.
By expressing R2RML mappings in terms of Datalog, we enable their integration with a broad range of
Datalog-based reasoning capabilities, e.g., efficient query answering, access control, and provenance
tracking.

In the future, we plan to conduct efficiency experiments comparing our R2RML Datalog-based
approach with prominent R2RML tools. We also plan to provide a single “universal” Datalog program
which, unlike the approach in this paper, does not require a translation step to convert the R2RML
mappings into a custom Datalog program. Instead, a single, fixed Datalog program is used, while
the R2RML mappings and the RDB are encoded as input EDB facts to this program. However, this
approach comes at the cost of increased reasoning complexity, as it requires support for both negation
and recursion. Lastly, we plan on extending our Datalog-based semantics to support the RML language
by adapting the current semantics to support additional input data formats.
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8. Appendix

R2RML Syntax Summary The following table provides a bottom-up summary of the components of
the R2RML syntax, along with their corresponding abbreviations and structure:

R2RML Component Abbreviation Structure
logical table ℒ𝒯 Base Table or View Name
Term map Term𝑚𝑎𝑝 (𝒱𝒯 , type, datatype, lantag)
Value term 𝒱𝒯 con , col , or a temp

Constant value con constant
Column name col column name in the schema
Template temp (𝑠, col1, 𝑠1, col2, 𝑠2, . . . , col𝑛, 𝑠𝑛)

Term type type IRI, Blank, Literal or ⊥
Datatype datatype a datatype IRI, or ⊥
Language tag lantag a valid language tag, or ⊥
Subject term map ST𝑚𝑎𝑝 same as a term map
Predicate term map PT𝑚𝑎𝑝 same as a term map
Object term map OT𝑚𝑎𝑝 same as a term map
Graph term map GT𝑚𝑎𝑝 same as a term map
Graph map G𝑚𝑎𝑝 a set of graph term maps
Subject map S𝑚𝑎𝑝 (ST𝑚𝑎𝑝,CL,G𝑚𝑎𝑝)

Class IRIs CL zero or more class IRI
Predicate map 𝒫ℳ a set of predicate term maps
Object map O𝑚𝑎𝑝 OT𝑚𝑎𝑝 or a referencing object map
Object map set 𝒪ℳ one or more object map
Predicate object map PO𝑚𝑎𝑝 (𝒫ℳ,𝒪ℳ,G𝑚𝑎𝑝)

Predicate object map set 𝒫𝒪ℳ one or more PO𝑚𝑎𝑝

Child 𝑐ℎ𝑖𝑙𝑑 a valid column name in ℒ𝒯
Parent 𝑝𝑎𝑟𝑒𝑛𝑡 a valid column name in ℒ𝒯 *
join condition 𝑗𝑐 (𝑐ℎ𝑖𝑙𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡)

join condition set 𝒥 𝒞 zero or more 𝑗𝑐

Referencing object map RefOmap (Smap*,ℒ𝒯 *,𝒥 𝒞)
Triples map 𝒯ℳ (ℒ𝒯 ,Smap ,𝒫𝒪ℳ)

R2RML mapping document ℳ one or more 𝒯ℳ
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