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Abstract
Inter-agent explanations are an emerging approach to agent communication that enable agents to share their
cognitive processes in order to reachmutual understanding. A key challenge is that agents are often heterogeneous,
built on different paradigms and architectures, which makes their internal representations difficult to exchange
directly. The Semantic Web offers key technologies, in the form of ontologies, that can facilitate interoperability
and shared understanding between hypermedia agents operating on the Web. We present work towards providing
Agent Abstraction ontologies that would allow hypermedia agents to abstract and exchange information about
their cognitive processes as part of inter-agent explanations.
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1. Introduction

A key challenge for multi-agent systems is enabling heterogeneous agents to understand and explain
each other’s reasoning and behaviour. While the emerging field of explainable agency has focused
on agents explaining their own decisions to humans [1], less attention has been given to inter-agent
explanations [2]. For example, an autonomous vehicle detects a pedestrian stepping out onto a crosswalk
and takes the action to brake. It may communicate this decision to autonomous vehicles behind it which
have not detected this event, and explain that the decision to take the action to brake over continuing is
due to the pedestrian on the road ahead. However, in real scenarios, agents are highly heterogeneous.
They can built on different paradigms (e.g., Belief-Desire-Intention (BDI) [3], reactive, LLM-based),
operate at different levels of granularity, and use diverse internal representations. Without a common
way to abstract and share their internal state, explanations remain close to the single architecture.

We argue that inter-agent explainability demands a uniform abstraction of agent state, enabling
explanations to be exchanged across heterogeneous agents. [2] proposes the use of symbolic techniques
for agents to represent and manipulate their cognitive processes and results, and share these repre-
sentations with other agents. The Multi-Agent-Oriented Programming (MAOP) paradigm provides
abstractions for structuring Multi-Agent Systems (MAS) along different dimensions [4], similarly in
heterogeneous agents, a mapping from their agent state a uniform or shared abstraction is necessary in
order to exchange inter-agent explanations.

For example, the granular brake action of the autonomous vehicle may need to be represented at
a higher level of abstraction in order to be meaningful for a different type of agent which does not
share the same agent architecture. Similarly to the cognitive hourglass described in [5], we propose a
hierarchy of abstractions which allow heterogeneous agents (and humans) to understand agents and
multi-agent systems regardless of the implementation and application context.

The Second International Workshop on Hypermedia Multi-Agent Systems (HyperAgents 2025), in conjunction with the 28th
European Conference on Artificial Intelligence (ECAI 2025); October 26, 2025, Bologna, Italy
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open katharine.beaumont@ucdconnect.ie (K. Beaumont); elena.yan@emse.fr (E. Yan); rem.collier@ucd.ie (R. Collier)
Orcid 0009-0001-9250-0090 (K. Beaumont); 0009-0000-6660-9378 (E. Yan); 0000-0003-0319-0797 (R. Collier)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:katharine.beaumont@ucdconnect.ie
mailto:elena.yan@emse.fr
mailto:rem.collier@ucd.ie
https://orcid.org/0009-0001-9250-0090
https://orcid.org/0009-0000-6660-9378
https://orcid.org/0000-0003-0319-0797
https://creativecommons.org/licenses/by/4.0/deed.en


Hypermedia agents can offer particularly valuable insight into how mutual understanding can be
shared: a core feature is the use Semantic Web technologies and standards to process knowledge
embedded in hypermedia [6]. Specifically, Semantic Web technology in the form of ontologies provides
semantically rich distributed data models and vocabularies which give shared meaning for a domain.
They can be reasoned over, enhanced, and extended to facilitate knowledge discovery as well as
information exchange [7]. The BDI agent paradigm has been used as the underlying technology in
various hypermedia agent systems; for example Jason [8] agents, which are based on the AgentSpeak(L)
formalism [9] are frequently used for example as part of the JaCaMo framework [4] (e.g. [10, 11, 12, 13]).
In addition implementations of the Multi-Agent Microservices (MAMS) framework [14, 15] have used
ASTRA [16] agents (which are also based on the AgentSpeak(L) formalism), for example [17, 18, 19, 20].

In advancing the path to a full technical solution for inter-agent explanations, we presentwork towards
an ontology for uniform representations of agent state, which can be shared between heterogeneous
agents operating in hypermedia environments, Agent Abstraction ontologies. The goal is to provide
mappings of the inner mechanisms of agent architectures to higher levels of abstraction and back again.
We use BDI agents as motivating examples. Section 2 presents related work. Section 3 presents initial
analysis towards the creation of Agent Abstraction ontologies. Section provides a detailed example of
how such ontologies could facilitate inter-agent explanations between hypermedia agents. Section 5
discusses the limitations of the approach and future work. Finally Section 6 concludes the paper.

2. Background

2.1. Explainable Agency

Explainable agency refers to the capacity for intelligent agents and robots to explain their decisions to a
human audience, and is an important challenge for academia and industry as such agents become more
pervasive [1]. There is a wealth of research into explainable agency; [21] provide a review of explainable
agency for robots and intelligent agents. [22] review prototypes in research which demonstrate
explainability in BDI agents. [23] propose an abstract framework for explainable multi-agent systems,
distinguishing between different explanation types and between interpretation and explanations. [24]
propose an explainability design pattern for agents, TriQPAN. On inter-agent explainability, [2] presents
the case for explainability, including between agents, as a central notion in engineering intelligent
system. [25] provide a prototype of inter-agent explainability, modelling inter-agent explanations as a
protocol which is geared towards agents providing recommendations using inter-agent explanations.

In [22] the explanation lifecycle for a BDI explainer agent is discussed, beginning with the generation
of explanation events during the agent’s deliberation cycle. These events trigger a unit generation
algorithm which produces structured explanation units which are added to an explanation store; these
are then used to generate the explanation (using an explanation generation algorithm) which is commu-
nicated with an explainee. In addition, [22] present five core requirements for engineering inter-agent
explainability in BDI multi-agent systems to address requesting explanations, generating explanatory
content, storing it, retrieving it, and using it to generate explanations, and then communicating the
explanation. The proposed Implementation Strategies (IS) are: IS1 An inter-agent explanation protocol to
exchange requests and guide communication; IS2 Implicit and explicit addition mechanisms to an expla-
nation store; IS3 Runtime state identifiers and state inspection mechanisms; IS4 Configurable retrieval
and explanation generation mechanisms; IS5 Uniform representations for machine-understandable
explanations.

As mentioned in the introduction, ASTRA and Jason agents have been used as hypermedia agents in
the MAMS and JaCaMo frameworks. As such we focus on state-of-the-art research into explainability
in ASTRA and Jason agents. In [22] a simple prototype in the ASTRA agent programming language
is presented, which explicitly and implicitly adds content to the explanation store (IS2), provides
runtime state identifiers and inspection mechanisms (IS3), and configurable retrieval and explanation
generation mechanisms (IS4). A protocol (IS1) and uniform representations for machine-understandable
explanations (IS5) is not provided; for IS5 the authors suggest that this is a route to inter-agent



explanations in heterogeneous systems, and that a practical way to implement it is the definition of
ontologies that can encode the semantics of the building blocks of an explanation.

[26] present a framework for multi-level explainability which distinguishes between the implementa-
tion level (the technical, engineering level), the design level (the agent’s knowledge about the world and
themselves, desires, intentions and such) and the domain level, which is the highest level of abstraction
which allows experts in the domain to understand the behaviour of the system, without knowledge of
the underlying processes. They present an implementation in Jason, which maps explanatory content
stored in an explanation store from the implementation to the design level, based on the concept
of the cognitive neck detailed in [5]; a conceptual framework which proposes the abstraction of the
inner workings of different agents to a level that humans can understand, without knowledge of the
underlying implementation or application.

2.2. Ontologies for Explainable Agency

[27] provide a set of guidelines for ontology development: they stress the importance of using existing
ontologies where possible, and generating competency questions to determine questions any knowledge
base based on the ontology should be able to answer. Ontologies consist of classes and properties,
plus instances, and in this sense can act like a Web-based knowledge base. On the use of ontologies
in communicating explanations, [28] provide a generic explanation ontology which provides a simple
explanation interaction protocol, explanation profile and explanation strategy. [29] provide an ontology
to formally define an explanation by analysing understandings of explanations from different disciplines.
[30] build on this to present a general Explanation Ontology1 and associated resources to provide human-
oriented system explanations of varying types such as contrastive, contextual, case-based, data, and
which facilitates explanations in knowledge-enabled systems, however the ontology does not provide a
full model of the different explanation types identified. The authors also detail an Explanations Pattern
Ontology2. These introduce classes and properties to construct explanations that support associations
between explanations, and recommendations, facts, or contextual knowledge on which they are based.
They also model that explanations answer questions, and may be the results of AI tasks generating
recommendations.

[31] propose the Explanation Interchange Format ontology, which aims to describe the communication
act of explanations and enable reasoning based on explanatory structures. [32] provide a description of
the IEEE 7007-2021 Ontological Standard for ethically driven Robotic & Autonomous systems (ERASs),
which includes a top-level ontology (TLO) and various sub level ontologies. The TLO models concepts
including agents and elements of agent state such as action events, agent communication, plans and
intentions, and also processes and physical objects and situations. The sub level Transparency and
Accountability ontology (TA) models concepts to provide agent explanations to address transparency
concerns. On the use of ontologies to represent agent state, [33] present an ontological analysis of
belief, desire as foundational work towards an ontology for BDI agents. The Hypermedia MAS Core
Ontology3 describes concepts which describe MAS, such as agent, signifiers, and artifacts, hypermedia
MAS platforms, workspaces, and organisations.

3. Uniform Representations for Agent State

The vision of this research is a set of ontologies which allows heterogeneous agents to generate expla-
nations and reach mutual understanding by sharing their internal state. In order to share information
about internal processes, the ontologies need to describe and define elements of agent state (meaning
symbolic representations of an agent’s cognitive processes). We approach this challenge by analysing

1https://raw.githubusercontent.com/tetherless-world/explanation-ontology/master/Ontologies/v2/explanation-ontology.owl
2https://raw.githubusercontent.com/tetherless-world/explanation-ontology/master/Ontologies/explanations-pattern-
ontology.owl

3https://ci.mines-stetienne.fr/hmas/core
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the abstractions that can be suitable for different agent technologies, to propose a design for Agent
Abstraction ontologies which would allow these concepts to be shared between hypermedia agents.

3.1. Levels of Abstractions for Representing Agent State

Agents can be built on diverse technologies and paradigms, resulting in different ways of representing
their cognitive processes. For instance, we can distinguish between goal-driven agents, reactive agents,
and LLM-based agents [34]. Goal-driven agents include BDI agents, which are further instantiated in
systems such as ASTRA, Jason, or other agent technologies.

To represent the agent state across these different technologies, we define three broad levels, inspired
from [26], to represent the agent abstractions: (i) the implementation level concerns agent concepts
specific to the agent technologies (e.g.,Jason, or ASTRA agents); (ii) the design level concerns concepts
used in the agent paradigm, for example, in BDI agent, this includes agent’s beliefs, intentions, plans,
goals and desires; (iii) the domain level, which is the highest level of abstractions, concerns concepts
common to all agents, e.g., cognitive concepts proposed in [5] such as constraints, wishes, hows, whys,
and whats.

Figure 1: Pyramid of abstractions

The need for interoperability across different types of agent, which may conform to different level
of abstractions, could be approached using these concepts. To frame the consideration of inter-agent
explanations using the levels of abstractions, an ontology could capture these different levels and be
used by agents to explain to other agents (or humans) at the appropriate level of mutual understanding.

Agents can communicate using abstractions from a common level. For example two ASTRA agents
could communicate at the implementation level to share implementation specific details such as custom
events, represented through the ontology, as part of an inter-agent explanation exchange. An ASTRA
agent and a Jason agent (both BDI agents based on AgentSpeak(L)) could share common elements at
the design level via a mapping which refers to subclasses which represent BDI concepts such as beliefs
and desires. Two very unrelated agents, such as a BDI agent and an LLM agent, may have to use higher
level or even top level classes in the ontology, representing higher level abstractions, using the domain
level to reach mutual understanding in an inter-agent explanation exchange.

3.2. Towards Agent Abstraction Ontologies

Existing ontologies and standards can be used to facilitate sharing explanations over the Web, which
could be reused or extended for inter-agent explanations, for example the Explanation Patterns Ontology



and Explanation Ontology [30]. In addition, the Hypermedia MAS Core Ontology4 provides core
concepts such as Agent, Artifact, HMAS platform, etc. that can be used to communicate information
about the global multi-agent system. We propose that a core Agent Abstraction ontology could be used
in conjunction with these to allow agents to communicate explanations based on the agent’s internal
state.

For example, the following is an extract from an example in [30] of the Turtle representation of the
process a system would undergo to generate a contrastive explanation requested in natural language,
Why drug B over drug A?5:

1 :ContrastiveQuestion
2 a sio:‘question’;
3 rdfs:label ‘‘Why Drug B over Drug A?’’ .
4

5 :ContrastiveExpInstance
6 a eo:ContrastiveExplanation;
7 ep:isBasedOn :SystemRecExampleA, :SystemRecExampleB;
8 rdfs:label ‘‘Guidelines recommend Drug B’’;
9 :addresses :ContrastiveQuestion .

We expect that the Agent Abstraction ontologies will be used to allow agents to expose their cognitive
processes and elements of their internal state. For the example above, the inter-agent request for an
explanation would replace line 3, and instead of using a natural language question could ask a question
by referring to observed actions described in a shared domain ontology. Similarly, the generated
explanation could detail the system recommendations (line 7) in machine-understandable terms at a
level of abstraction that both agents can understand.

For this, a core set of concepts is required. We start by considering the top level of the pyramid and
the cognitive processes detailed in [5], namely wishes, hows, constraints, and whats. However we omit
whys: we envisage that these take the form of a protocol for inter-agent explanations as per [22]. We
term the class to which these cognitive processes extend as Domain.

To represent the different levels of abstraction within the ontology we also include the top level
classes Design and Implementation. We envisage that the three top level classes would sit under an
umbrella concept Abstraction. Design and Implementation would allow subclasses of the Domain to be
categorised, for example to indicate that a subclass of how, such as a plan, is represented in the BDI
paradigm (a subclass of Design), and is implemented in ASTRA (a subclass of Implementation).

Domain Level Class Design Level Class Implementation Level Class

Constraint Rule
What Action External Action

Internal Action
Event
Belief Belief From Source

Internal Belief
Intention

How Plan
Wish Desire

Goal

Table 1
Mapping of the core classes of the Abstract Agent ontology in the Domain, Design, and Implementation Levels
to represent BDI agents

4https://ci.mines-stetienne.fr/hmas/core
5In the latest version of the ontology (the link is provided in Section 2), only contrastive questions are modelled which is why
in Section 4 this format is not used.

https://ci.mines-stetienne.fr/hmas/core


For example, to show how the core Agent Abstraction ontology might represent elements of agent
state for BDI agents we present Table 1. Subclasses of the core cognitive processes (Constraint, What,
How, Wish) represent core concepts in BDI agents: rules, actions, events, beliefs, plans, desires, and
goals. Relationships between classes would indicate the different levels that the concepts relate to: for
example Action is modelled in AgentSpeak(L) and both ASTRA and Jason. For implementation specific
concepts such as External Action, subclasses of cognitive processes may be linked using relationships
which indicate that the concept is represented in the specific implementation Jason, and the lack of
a relationship with a higher abstraction (such as the BeliefDesireIntention design and the formalism
AgentSpeak(L)) indicates that it has an implementation level-only scope. For different agent architectures,
we expect that it may be necessary to create additional ontologies that extend a core Agent Abstraction
Ontology in order to fully describe their implementations.

Designing the properties of different classes, and the relationships between classes and concepts will
be a key challenge. In addition to properties to describe the relationships between core concepts, for
properties to describe the design or runtime state of an agent we identify four primary dimensions:

• Logical dimension: for example conjunctions, disjunctions, and more complex operations over
cognitive processes, in order to be able to express more complex facets of agent reasoning such
as inferences and context conditions.

• Hierarchical dimension: representing the programmatic or procedural relationships between
different cognitive processes, such as hierarchical plans and to define the bodies of plans, such as
sequences of events and actions.

• Causal dimension: representing the consequences of the execution of agent state, for example
that an event triggers a plan, or a belief update causes an action.

• Temporal dimension: representing the temporal dimension of the execution of the agent program.

A challenge for representing the logical dimension of agent state will be the need for high degrees
of expressive power to represent sophisticated cognitive processes and reasoning techniques [35].
Additional challenges include how agents handle inconsistencies in internal models, and how to ensure
that when mapping between levels of abstractions, information does not get lost in translation between
different agent systems, that meaning isn’t distorted, and how to evaluate the proposed ontologies.

4. Exchanging Explanations in Heterogeneous Agents

In order to illustrate how some Agent Abstraction Ontologies could allow heterogeneous agents to
exchange explanations which contain mutually understandable representations of their cognitive
processes, we refer to the implementation strategies (IS1-5) from [22] which are detailed in Section
2.1. We use an illustrative example of a scenario in which multiple autonomous vehicles navigate
and exchange explanations within an urban environment. These autonomous cars are controlled by
autonomous agents that may be developed using different architectures, hosted on the Web. The
mapping of levels of abstractions to reach the high cognitive level, used as a uniform representation in
a shared ontology, facilitates explanations and mutual understanding across heterogeneous agents.

Consider a scenario in there are two autonomous vehicles, Car A implemented in a Jason agent,
and Car B implemented in an ASTRA agent. Figure 2 illustrates the exchange of explanations
between two such agents. Car A is accessible at www.example/simulation#carA and Car B at
www.example/simulation#carB. As Jason and ASTRA agents have different concepts, but are both BDI
agents, they may find mutual understanding at the design level. However, at the start of the scenario,
the agents may not be knowledgeable about the implementation of other agents. In the scenario, Car A
has detected a pedestrian crossing the road and takes the action to brake. Another autonomous car, Car
B, that has not detected the pedestrian, does not understand the brake action of Car A. Car B requests
that Car A explain the action. In the following, we describe how the explanation can be exchanged by
extending the strategies introduced in [22].



Figure 2: The process of exchanging explanations in heterogeneous agents involves mapping their abstractions
across the design and implementation levels (blue pyramid).

Generating Explanatory Content at the Implementation Level In order to enable sharing
explanations, a core part is the generation of explanatory content. The generation of the explanatory
content is performed at the implementation level to align with the events that are generated during the
agent deliberation cycle. Two type of mechanisms for generating explanatory content can be used (as
suggested in IS2): implicit automatic mechanisms during the agent execution and explicit manually
configurable mechanisms at the agent language level.

Implicit mechanisms are embedded in the agent’s reasoning cycle, and the functions for generating
explanatory content are implemented in the agent’s architecture. Explicit mechanisms allow the agent
developer to configure the relevant events to be recorded in the agent code. As per IS3, we need to
identify language-level identifiers for the core elements of an agent runtime state (e.g., beliefs, plans,
actions, etc.) and their causal relationships (e.g., an action is explained by a goal). The detailed structure
of these elements is platform-dependent. For instance, the explanatory content in Jason, as identified
in [26], include events related to: (i) perception, (ii) speech act message, (iii) plan, (iv) belief, (v) goal,
(vi) intention, (vii) internal action, and (viii) external action. In ASTRA, additional events related to plan
acquisition [36] and module events can form part of explanatory content, as well as custom content
added at the language level (for example Java objects or data values) [22].

Storing Explanatory Content at the Implementation Level Having generated the required events
of the agent state, through either implicit and explicit mechanisms, these are added and stored in the
explanatory content store. An example of the explanatory content store at the Jason Implementation
Level for the Car A is illustrated in Table 2.

Generating the Explanation Request at the Design Level Car B, since it has not perceived the
pedestrian, does not understand the action brake of Car A, but we assume that Car B interprets the action
of Car A, using a shared understanding of the available actions they can take (for example, we may
imagine an ontology for the observable behaviour of vehicles, car). In order to respond appropriately,
Car B requests an explanation of the action brake from Car A. In order to determine the correct level of
abstraction at which to communicate, a strategy may be to send a preliminary message to confirm the
implementation class of the agent. In a real-time driving scenario however this may be impractical
(or agents may have strategies to introduce themselves to surrounding agents). Instead, Car B could



Id Type State Detail

𝑒𝑖𝑚𝑝𝑙1 Percept Added pedestrian[source(crosswalk)]

𝑒𝑖𝑚𝑝𝑙2 Belief From Src Added pedestrian[source(crosswalk)]

𝑒𝑖𝑚𝑝𝑙3 Goal Created slow_down

𝑒𝑖𝑚𝑝𝑙4 Plan Selected slow_down

𝑒𝑖𝑚𝑝𝑙5 Intention Created int-1 slow_down

𝑒𝑖𝑚𝑝𝑙6 External Action Started brake

Table 2
Events of the agent Car A state generated and stored at Jason Implementation Level.

include its own design and implementation classes in the communication, but keep the explanation
request as high-level as possible (at the domain level). Car A can then select the appropriate level to
respond at, or Car B could ask for more details if the resulting explanation is not satisfactory.

The content of the messages should contain ontologies to structure the message content. For example,
the body of a request for an explanation could be formatted in JSON-LD6, with a @context section
which defines the ontologies which will be used in the message; see below. We suggest that a strategy
for the explanation request could be to include the explainee agent type and identifier, design and
implementation details in addition to the body of the request, which is formatted at the domain level.

As a basic illustration, in order to frame the question, the Explanation Ontology (prefix eo) [30]
could be used, for example using the relationship eo:asks to imply that it is a question expecting an
explanation as an answer7. We may imagine that a core Agent Abstraction Ontology has the prefix aa,
and the subclass of Domain, What, indicates that the agent is addressing cognitive processes addressing
facts or beliefs:

CarB eo:asks [aa:what car:brake]

The request for the explanationmay also use concepts from the Norms and Ethical Principles Ontology
(NEP), but here the specific ontology to frame the explanation question is not intended to be prescriptive.

An existing ontology which is based on the FIPA ACLMessage Structure Specification8 ([20]) could be
used to structure the content of the message (this is used below with the prefix fipa). The Hypermedia
MAS Core Ontology could be used to provide additional information about the agent (prefix hmas). We
may imagine that an ASTRA specific extension to the Agent Abstraction Ontology has the prefix astra,
and a Jason specific extension has the prefix jason. We may imagine an ontology for the observable
behaviour of vehicles with the prefix car. The request for the explanation from Car B may then take
the form:

1 "@id": "www.example/simulation#carB",
2 "@type": "hmas:Agent",
3 "@context": {...},
4 "hmas:isMemberOf": "...",
5 "aa:design":"aa:AgentSpeakL",
6 "aa:implementation": "astra:mams",
7 "fipa:request": {
8 "fipa:sender": "www.example/simulation#carB",
9 "fipa:receiver": "www.example/simulation#carA",

10 ...
11 "fipa:content": {
12 "eo:asks": {"aa:what": "car:brake"}
13 }
14 }

6https://json-ld.org/
7https://raw.githubusercontent.com/tetherless-world/explanation-ontology/master/Ontologies/v2/explanation-ontology.owl
8http://www.fipa.org/specs/fipa00061/SC00061G.html

https://json-ld.org/
https://raw.githubusercontent.com/tetherless-world/explanation-ontology/master/Ontologies/v2/explanation-ontology.owl
http://www.fipa.org/specs/fipa00061/SC00061G.html


Line 2 indicates that the sender of the message is an Agent as defined in the Hypermedia MAS Core
Ontology. The core Agent Abstraction Ontology is used to indicate that CarB adheres to the BDI paradigm
using AgentSpeak(L) (line 5) and at the implementation level, is an ASTRA agent using the MAMS
framework (line 6). The FIPA-ACL ontology structures the message, which is framed as a request for an
explanation (lines 13-14), concerning the action brake (line 15). This illustrates what we consider to
be the most basic request for an explanation. In the future, we envisage this being more nuanced, for
example asking for contrastive explanations.

Sending and Receiving the Explanation Request [25] propose a general content-agnostic proto-
col for inter-agent explanations, which allows agents to accept or reject given recommendations or
request more details. The design of the protocol adheres to the REpresentational State Transfer (REST)
architectural style [37]: that each message is designed to be self contained. Similarly, a protocol could
be used to formalise the exchange of messages between Car A and Car B, which can be communicated
using REST over HTTP. In order to request an explanation, Car B may send a POST request with the
request for an explanation to Car A, which Car A receives.

Interpreting the Explanation Request fromDesign Level to Implementation Level To interpret
the explanation request, Car A needs a plan to react to the incoming message and parse the content
of the message body. From this, Car A can extract the FIPA performative (request), and from the
message content (fipa:content) that the sender is requesting an explanation (nep:Explanation of
eo:Explanation), about car:brake at the domain level (aa:what).We assume that Car A has a mapping
between the ontology description car:brake and its external action brake 𝑒𝑖𝑚𝑝𝑙6 ; For example the unit
generation algorithm that adds events to the explanatory content store could be extended to include
Semantic data as suggested in [22]. Due to the additional information in the message Car A can also
extract the design and implementation levels of Car B. Car A and Car B share the same design, and
therefore Car A can generate an explanation at the design level.

It follows that inputs to an explanation generation algorithm (see [22]) would include information
about the explainee, which the explainer can use to determine the level at which to generate the
explanation, as well as the specific explanation request.

Generating Explanation from Implementation Level to Design Level In order to generate
explanations, the agent needs first to select from the explanatory content store all the relevant events
required to build the explanation. Second, the agent needs to select from a set of explanation functions
the appropriate function according to the particular event, purpose, or level of abstraction of the
explanation.

Car A received the request from Car B to explain at the domain level the external action brake, but
it has inferred that they operate at the same design level and so can generate the explanation at this
level. Looking at the causal relationships that lead the action brake 𝑒𝑖𝑚𝑝𝑙6 we could have the following
sequence at the implementation level:

𝑒𝑖𝑚𝑝𝑙2 ← 𝑒𝑖𝑚𝑝𝑙3 ← 𝑒𝑖𝑚𝑝𝑙5 ← 𝑒𝑖𝑚𝑝𝑙6

That is: “I brake because I have the intention int-1 created from the goal slow_down, because I believe
there is a pedestrian at the crosswalk”.

Together with the explanation functions, in order to communicate with a higher level of abstraction,
within the agent we also need to define a set of mapping functions that are dependent on the technology
used at the implementation level. These mapping functions map a set of explanatory contents at the
lower level to one explanatory content at the higher level. An example of mapping is represented in
Figure 3. The specific mappings and relationships could be informed by the Agent Abstraction ontologies:
for example either within the core ontology, or an extension specific to Jason which extends the classes
and relationships in the core Agent Abstraction ontology.



edesign1 edesign5 edesign6

eimpl
2 eimpl

3 eimpl
5 eimpl

6

explained by explained by

explained by explained by explained by

mapped to mapped to mapped to

Figure 3: Example of mapping from the explanatory contents at the Implementation Level to the explanatory
contents at the Design Level.

Id Type Detail

𝑒𝑑𝑒𝑠𝑖𝑔𝑛1 Belief pedestrian at crosswalk

𝑒𝑑𝑒𝑠𝑖𝑔𝑛5 Intention int1 slow down
Goal slow down

𝑒𝑑𝑒𝑠𝑖𝑔𝑛6 Action brake

Table 3
Events of the agent Car A state generated and stored at Jason Design Level.

Table 3 shows an example of the outputs of the mapping: the implementation details are represented
by design-level concepts, for inclusion in the explanation. To generate the explanation, an explanation
generation algorithm is applied (as per [22]) which may select from a set of explanation functions,
according to the intended audience which in this case is another agent. The explanation function may
chain the design level details selected, represented using the core Agent Abstraction Ontology, using an
ontology such as Explanation Ontology to frame the concepts, and the Explanation Patterns Ontology
(prefix ep) ([30]) which allows an explanation to be linked to some prior knowledge.

For example, the explanation instance may be represented in JSON-LD as such:

1 "ContextualExplanationInstance": {
2 "rdf:type": "eo:ContextualExplanation",
3 "ep:isBasedOn":
4 [ "ContextualKnowledgeInstance1", "ContextualKnowledgeInstance2" ],
5 "eo:addresses": {"aa:what": "car:brake"}
6 }
7 "ContextualKnowledgeInstance1": {
8 "rdf:type": "eo:Contextual_Knowledge",
9 "aa:agentState": {

10 "rdf:type": "aa:Intention",
11 "aa:hasInformation": "int-1 slow down",
12 "aa:explainedBy": "ContextualKnowledgeInstance3"
13 }
14 }
15 "ContextualKnowledgeInstance2": {
16 "rdf:type": "eo:Contextual_Knowledge",
17 "aa:agentState": {
18 "rdf:type": "aa:Goal",
19 "aa:hasInformation": "slow down",
20 "aa:explainedBy": "ContextualKnowledgeInstance3"
21 }
22 }



23 "ContextualKnowledgeInstance3": {
24 "rdf:type": "eo:Contextual_Knowledge",
25 "aa:agentState": {
26 "rdf:type": "aa:Belief",
27 "aa:hasInformation": "pedestrian at crosswalk"
28 }
29 }

This defines a Contextual Explanation as per [30] which contains a collection of contextual knowledge.
In this case, this is represented by the Goal and Intention of the agent, which are in turn based on
the Belief of the agent that there is a pedestrian, which represents a fact about the world (being a
subclass of What in the Agent Abstraction Ontology). For the sake of the example, we imagine some
relationships in the Agent Abstraction Ontology such as aa:agentState to indicate that the content of
the contextual knowledge relates to agent state, aa:hasInformation and aa:explainedBy to indicate
the contents of the state and causal links respectively. In reality, the specific details (such as the belief
pedestrian at crosswalk) may also need to be mapped to some external shared ontology such as
the fictitious car ontology, in order for the details of agent state to be meaningful between agents.

Communicate Explanation at the Design Level As for above, the message is communicated by Car
A to Car B over HTTP using REST. Per our discussion above, we suggest the messages be self-contained,
i.e. in the generated explanation, the initial question posed by Car B is included (line 6 in the example
above).

Car B can then receive and interpret the explanation, as it has been communicated at a level of
shared understanding (the design level) using some explanation interpretation algorithms as per [22].
For example, Car B could determine whether the reason given for the action to brake (the belief that
there is a pedestrian) corresponds with any plans it has, for example perhaps (hopefully) Car B has a
plan to brake when it perceives a pedestrian and so takes this action too.

5. Limitations and Future Work

The above presented preliminary analysis towards Agent Abstraction ontologies, as such more analysis
is required, in particular around the relationships between concepts across the dimensions identified
in Section 3.2. We positioned the Agent Abstraction ontologies as a set; with a core Agent Abstraction
ontology which is extended at the implementation levels. However, in designing the core ontology we
may need to be realistic about how much meaning very disparate types of agents can share; extensions
may also be required at the design level. Nonetheless, immediate future work is to continue analysis
and create a prototype core Agent Abstraction ontology in order to demonstrate the example presented
in Section 4. In the longer term, we hope to address the issue of sharing meaning between agents with
a higher architectural dissimilarity.

Wider future work includes extending existing ontologies such as the Explanation Ontology [30] to
include a greater range of question types, and concepts applicable to inter-agent explanations. What
these inter-agent specific concepts are, and how inter-agent explanations can be evaluated and are
distinguished from other inter-agent communication technologies, also requires further analysis.

Although the use of ontologies allows agents to share knowledge there are still programming
overheads when designing agents which can use and interpret the information shared. In the above,
agents may need to integrate domain-specific ontologies into the stage at which explanatory content is
generated, for example instead of (or as well as) storing a detail such as pedestrian at crosswalk, a
Semantic representation of the belief may need to be stored. This would be required so that agents can
share domain understanding on the actions, beliefs, goals, etc. of other agents.

Once a core Agent Abstraction ontology is created, potential future work would be to expose the
Semantically augmented explanation store of an agent as a Knowledge Graph which could be examined
by other agents and reasoned over to generate new knowledge.



6. Conclusion

We presented preliminary analysis towards a core Agent Abstraction ontology which we propose can be
extended for different agent architectures at the implementation level. We rely on existing ontologies
for exchanging explanations, and position the Agent Abstraction ontologies as part of a suite of tools
to facilitate inter-agent explanations between heterogeneous hypermedia agents. We propose that
to facilitate such exchanges, the ontologies need to operate at different levels of abstraction: agents
which have very dissimilar architectures interacting at the highest levels, and agents which are very
similar interacting at lower levels. At the highest levels, we model classes based on the concept of
the cognitive neck introduced in [5]; constraints, wishes, hows and whats. The analysis stops short of
providing relationships between the classes and proposes four dimensions along which to design such
relationships, the logical, hierarchical, causal and temporal dimensions. This is proposed as future work,
along with an implementation which illustrates the example discussed.

We shared the example of two agents sharing understanding at the design level, generating ex-
planatory content and exchanging messages containing representations of their internal state to reach
mutual understanding. The agents demonstrated where ASTRA and Jason agents, which have been
used in hypermedia agent frameworks. As we are aiming for interoperability and mutual understand-
ing between agents with similar, and different architectures, the particular agents do not have to be
hypermedia agents specifically. However they do need to be able to leverage Semantic Web technology,
and beyond inter-agent explainability, we propose that uniform representations for agents state could
also be valuable tools in information exchange and interoperability between heterogeneous agents on
the Web generally.
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