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Abstract

Cyber-physical devices (CPDs) are now widely employed in environments like smart buildings and factories.
Many of these devices are involved in managing physical processes, such as the transformation of substances and
energy. When it comes to achieving adaptive behavior through autonomous artificial agents that use such CPDs
as artifacts in the pursuit of their goals, understanding (by the agent) both the technical interface of a CPD and
its underlying physical processes becomes important. The W3C Web of Things Thing Description (TD) standard
aims to address this challenge; however, hitherto, only the possibility of achieving technical interoperability has
been explored, while the inclusion of the semantics of underlying physical processes remains to be explored.
In this article, we describe our work in progress, which seeks to demonstrate how existing models that enable
the description of physical processes can be used to embed such knowledge directly in the TDs. We further
explore how this may enable artificial agents in a hypermedia environment to discover and utilize distributed
CPDs without relying on a centralized, authoritative source of knowledge. We present intermediate results from
our evaluation of an intelligent room automation system that demonstrates adaptive behavior through runtime
discovery of CPD affordances.
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1. Why Machine-understandable Knowledge of Physics is Essential

Electro-mechanical devices often interact with a physical environment where they transform streams
of substances, effort, and energy (the collective term being physical stuff [1]). Such a device may be a
heater in a room that transfers thermal energy to the air to increase its temperature, or a light bulb that
changes the illuminance of a surface through the emission of photons. We humans learn about the role
and functioning of such devices through everyday experience, which is, for some, complemented with
expert in-depth knowledge. We often use this information to adapt when the availability of devices that
can act on our physical environment changes, or to select the optimal means when multiple options are
available. For example, in a room with light bulbs and windows equipped with sun blinds, we can select
which to use to illuminate the room because we are aware of the physical effects of the two devices.
However, when it comes to artificial agents, research has been primarily focused on agents learning the
physical effects (of operating a device) through sub-symbolic reasoning over observations of actions
and their consequences [2]. Such approaches not only require large training datasets, but also often
need manual engineering to ensure that the models do not inadvertently capture physically unrelated
causes and effects. In addition, a model trained based on observations of a particular environment
might become tightly coupled to this environment and may not easily adapt to unforeseen changes.
The motivation behind achieving autonomy through Knowledge Graphs (KG), on the other hand, is
driven by the possibility of using formal reasoning on expert knowledge captured through ontologies [3].
To support this approach, W3C’s Semantic Web standards, such as RDF, OWL, and SPARQL, allow
authoring of ontologies and KGs and making them accessible to software agents. Consequently, over
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the past decade, several ontologies in engineering based on OWL/RDEFS have been published, including
those for requirements engineering, system design, control programs, and physical processes [4]. In
our previous work [5, 6], we demonstrated how these ontologies can be integrated to represent the
holistic knowledge of the system, enabling artificial agents in a multi-agent system to automate the
functioning of industrial electro-mechanical systems. In particular, we have shown how artificial agents
can use both qualitative and quantitative ontology-based models of physical processes to reason about
control and coordination strategies [7, 5]. For example, using such models, an agent responsible for
controlling sun blinds would know that under some circumstances, the goal of illuminating the room
can be achieved in a more energy-efficient manner by raising the blinds instead of switching on the
lights.

However, the classical notion of KG-assisted autonomy in industrial systems considers a central
source of system knowledge [4]. In large, heterogeneous, and dynamic deployments of CPDs, authoring
and maintaining such centralized KGs is challenging because it demands manual engineering and
maintenance as compared to distributed KGs that are provided by individual sub-systems and ven-
dors. In [5], we demonstrated that augmenting TDs with knowledge about the physics underlying
physical devices facilitates the automated engineering of control systems. By using TDs as a vehicle
for conveying knowledge about the underlying physical processes in the CPDs, we achieved a way
of making knowledge available to the agents in a distributed manner by embedding the KGs directly
in the CPDs. In this article, we demonstrate how this approach can be extended to support agents
in hypermedia-based multi-agent systems that need to achieve goals assigned to them at runtime.
We demonstrate that agents can discover the CPDs, their local roles in the physical process, and the
necessary global coordination.

We will use a running example of a room heating system that needs to work in coordination with
a central boiler to illustrate the practical application of our approach. The deployment scenario we
address for industrial systems involves individual agents being designated to one or more functional
roles required in the physical system (e.g., a heating controller in a room). The agents need to discover
and use the CPDs as artifacts in the (physical) environment. We evaluated our approach in a real-life
setting of a smart room application. In this scenario, the presence of CPDs, their technical interfaces,
and the description of the physical processes they are involved in are not known a priori to agents
responsible for automating heating, ventilation, and lighting functions in the room. We found that in
all cases, the agents adapted successfully to changes in requirements, regulations, and the availability
of CPDs.

2. Existing Work on Modeling Physical Processes

Physical processes are composed of interlinked (physical) mechanisms. A mechanism—for example, heat
exchange—is traditionally represented using mathematical models of its static and dynamic behavior.
The resulting behavior of the process itself can be understood by iteratively solving the linked mech-
anisms. Although ontological models (like Bond graphs) can be used to represent the mathematical
models [1], the solvers required—especially for dynamic systems—are non-trivial [8]. Therefore, in
practice, mathematical models are encapsulated within a simulation program, which is then executed
by the agents that need to understand how the process behaves. Such a simulation program can be
packaged as a portable and interoperable functional mockup unit (FMU), the interfaces of which can
be described using an ontology [9]. Often, a qualitative model of physics is sufficient to describe the
working of a CPD. For example, such a model can be used to state that increasing the energy input to
the heater would increase air temperature. In [6], we proposed an ontology that allows designers of
CPDs to create stereotypical models of a CPD’s physical behavior.

Recent efforts in the semantic modeling of physical processes within the Web of Things context
have shown promising potential. Researchers have proposed extensions to TD models that incorpo-
rate physical semantics through specialized vocabularies (e.g., [10]). These vocabularies enable the
description of physical properties, units, and relationships between physical quantities, making TDs
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Figure 1: In the example scenario, the agents needs to coordinate to establish thermal energy flow

more expressive for representing physical processes. The SOSA/SSN ontology ! has been adapted to
describe sensors and their physical measurement contexts, while the QUDT ontology provides stan-
dardized representations for physical quantities and units 2. These approaches aim to establish a shared
vocabulary for well-known actions and perceptions in real-life physical systems; however, they require
syntactical interpretation (of class names) by the agents’ part. For example, the definition of the TD
action affordance iotschema: IncreaseTemperature proposed in IoT Schema is devoid of a description
of the underlying physics (i.e., the quantity and its trajectory) and the causation (e.g., the precondition
towards exploiting the affordance is that there should be a supply of input energy). Therefore, compared
to the state of the art, we argue that autonomous agents, especially in a hypermedia setting, would
benefit from knowledge grounded in physics; this would avoid the need for tight coupling to specific
vocabularies when reasoning about affordances provided by CPDs.

3. How we Integrated Physics into Thing Descriptions

Our previous work [6, 5, 7] enables designers of CPDs to describe the underlying physical processes.
The openly-available Elementary ontology® integrates this past research.

We will use a running example of a building’s heating system to demonstrate how concepts presented
in Elementary can be applied to augment the interaction affordances in TDs with knowledge about the
underlying physical processes. The scenario illustrated in Figure 1 shows two agents, one responsible
for maintaining the thermal comfort in the room and the other responsible for managing the hot water
supply. However, these agents are not a priori aware of the artifacts available in the environment; in
our scenario, these are the room heat radiator, the central boiler, and the temperature sensors. We
emphasize the absence of upfront engineering because it serves to highlight later that the agents can
adapt when features or the availability of CPDs change at runtime (e.g., a new means of heating the
room becomes unavailable, or a device is upgraded).

In this section, we first show how the TDs of the CPDs can be augmented with information about
physical processes. In Section 4 we describe semantic rules that agents pursuing goals in hypermedia
multi-agent systems can use on top of the physics-infused TDs to determine (1) the relevant interaction
affordances of a TD to use and (2) the coordination required with agents managing dependent CPDs.

Listings 1 and 2 show the TDs of the two central artifacts involved in the scenario; namely, the
room radiator and the boiler. The action affordance fuel-valve-actuation of the boiler has been

'https://www.w3.0rg/TR/vocab-ssn/
*https://www.qudt.org/
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augmented with two key facts: (1) the physical quantity that the action directly manipulates in the
mechanism, i.e., the fuel flow rate, and (2) the expected consequence of the manipulation, i.e., the
temperature of water supplied by the boiler. The TD of the radiator in the room similarly expresses
the semantics of the heat exchange process, i.e., opening the valve will cause the air temperature to
increase. In addition, to indicate a physical dependency, the TD of the radiator, through the property
fedBy, points to the TD of the boiler.

Listing 1: Fragment of the TD of a boiler augmented with knowledge of physical process
{

"@type": "brick:Boiler", "hasStereotype": "hvac:FuelFiredBoiler",
"@id": "http://building-a/boiler-1",

"simulationModel": "http://server/boiler.fmu",

"actions": {
"fuel-valve-actuation": {
"actuator": {"etype": "brick:valve"}, "relatedTo": {"@type":"hvac:Combustion"},
"manipulates": {
"atComponent": {"e@type": "hvac:Burner"},
"stuff":"brick:Fuel", "position": "inlet",

"quantityKind":"qudt:VolumeFlowRate"

1
"affects": {
"trajectory": "directly-porportional",
"atComponent": {"etype":"hvac:BoilerTube"},
"stuff":"brick:Water", "quantityKind": "qudt:Temperature", "position": "outlet",
"observedBy": "http://building-a/boiler-1/outlet-temperature-sensor"
3
"forms": [{ "href": "/actions/fuel-valve-position" }]
}
Listing 2: Fragment of the TD of a radiator in the room
{
"@type": "brick:Radiator", "hasStereotype": "hvac:HeatExchanger",

"@id": "http://building-a/room-1/radiator-1",
"simulationModel":"http://server/radiator.fmu",
"brick:fedBy": "http://building-a/boiler-1",

"actions": {
"increase-water-flow": {

"actuator": {"etype": "brick:valve"}, "relatedTo": {"etype":"hvac:HeatTransfer"},

"manipulates": {
"atComponent": {"@type": "hvac:Radiator"},
"stuff":"brick:Water", "position": "elem:inlet",
"quantityKind":"qudt:VolumeFlowRate"

IS

"affects": {
"trajectory": "directly-porportional",
"atComponent": {"e@type":"hvac:Room"},
"stuff":"brick:Air", "quantityKind": "qudt:Temperature", "position": "elem:contained",
"observedBy": "http://building-a/room-1/air-temperature-sensor",
"precondition": {

"stuff": "brick:Water", "position": "elem:inlet",



"quantityKind":"qudt:Temperature", "minimumvalue": 80}
3
"forms": [{ "href": "/actions/water-valve-position" }]

}

We highlight that where quantitative evaluation of physical processes (often for dynamic systems)
is required, the agent has access to the simulation FMU by following the link pointed to by the
simulationModel relationship. With the two example TDs as background, we now explain how agents
can discover and use the CPDs to achieve the goals that are assigned to them.

4. How Agents can use the Physics-infused TDs

In [6] we showed that goals related to physical processes can be expressed in terms of achieving,
maintaining, or avoiding a given value (or range of values) of a physical variable. For example, the goal
to maintain the room’s temperature can be expressed as:

:maintain-temperature a req:MaintenanceGoal;

req:hasContext :room-1; req:maintain :air-temperature;

:air-temperature a phy:Physicalvariable;
phy:dealswithStuff phy:air; phy:hasQuantityKind phy:temperature;
elem:position elem:contained; phy:hasDesiredvalue :setpoint;

phy:allowedTolerance 5.

Given the above goal description, the agent queries a Thing Directory * (where CPDs register their
TDs) to find TDs and their interaction affordances that may be useful in fulfilling the goal. The following
query in SPARQL® shows how this can be matched (in a generic way):

1 SELECT ?comp ?rel ?dep WHERE({

2 ?thing a td:ThingDescription.

3 ?thing td:hasInteractionAffordance ?affordance.

4 ?affordance elem:manipulates ?affectedvariable.

5 ?affectedvariable elem:position ?position; elem:stuff ?stuff; elem:quantity ?q.
6 :maintain-temperature req:addresses ?variable.

7 ?variable elem:position ?position; elem:stuff ?stuff; elem:quantity ?q.

8}

In the context of the example scenario, the above query returns the increase-water-flow action
affordance of the radiator. The agent can then infer the protocol-binding-related information to invoke
the action. In addition, from the semantic description, the agent also infers (through the precondition)
that the manipulation is dependent on the temperature of the inflowing water; and from the dependency
indicated by the fedBy relationship, the agent knows that it must coordinate with the boiler. In [7] we
showed how agents can use hypermedia interactions to discover their collaborating peers and establish
coordination. Therefore, if the physical-process-related precondition of a manipulation is not met, the
agent infers the components on which the mechanism (i.e., the object of manipulation) is dependent,
and attempts to establish collaboration with the agent that manages the corresponding component.

5. Evaluation

We evaluated our approach using a real-life setup of a small office room. The room was equipped with
several devices that could fulfill a given function. Specifically:

1. Air heating through a hot-water radiator and an electric heater

*https://github.com/thingweb/thingweb-directory
Shttps://www.w3.org/TR/sparql11-query/



Change Expected reaction Fulfilled

Add energy-efficient lamp Lighting control agent avoids use of ceiling lamps Yes
Remove central heating Heating control agent switches to using local electric heater Yes
Add air quality constraint Ventilation control agent is activated and uses the exhaust fan Yes

Add air humidity constraint | Heating control agent has additional goal and uses the humidifier | Yes

Table 1
The results of our evaluation show that the automation agents could adapt to changes

2. Air humidification through a vapor humidifier
3. Lighting through ceiling and floor standing lamps
4. Ventilation through window-mounted exhaust fan

All devices were fitted with actuators and sensors that could be accessed over a wireless network.
The TDs of the devices were stored in a Thing Repository service®, which also provided an endpoint for
executing SPARQL queries.

To test the adaptive behavior of our deployed system, we made the following synthetic changes
during run time:

1. We removed access to the radiator and replaced it with the electric heater.

2. We added a floor-standing lamp in addition to the ceiling lamps; the standing lamp has a consid-
erably lower power consumption.

3. We revised the requirements by adding and removing room humidity and air quality maintenance
goals.

4. We simulated the failure of the central boiler.

We deployed three agents, responsible for heating (and humidification when required), lighting, and
ventilation, respectively.

Table 1 shows the obtained results: our approach enabled the agents to react to changes and (re)dis-
cover CPDs that can be used to achieve their goals.

6. Discussion and Conclusions

We have highlighted that the already prevalent intuition about enabling autonomy through KGs can be
further strongly argued for in industrial automation systems if we also explicitly include the knowledge
about physical processes. Our work has shown that even a naive qualitative description of the underlying
physics goes a long way towards achieving adaptive behavior. When only a high-level description of
the physical process is available, it can be utilized to support data-oriented machine learning methods.
This is particularly relevant for dynamic interlinked physical processes, where full-fledged qualitative or
quantitative models are difficult to construct. The challenge posed by linked dynamic systems to purely
data-oriented methods is illustrated by an extension that we formulated to the often demonstrated
example of cart pole [11]: by linking two carts with a spring-damper connection, a Q-Learning-based
implementation did not succeed to learn a policy even after more than 8000 episodes (for an isolated
cart, on the other hand, the algorithm needs only about 400 episodes). However, by incorporating a
basic and high-level physics model of the connecting spring, the two agents successfully balanced the
poles after approximately 1200 episodes. Our insight is that when linked dynamic mechanisms are
involved, the agents responsible for individual parts must coordinate. Knowledge of system construction
and physical processes enables agents to recognize coordination needs. Therefore, quantitative and
qualitative knowledge of physical processes will also benefit Al-assisted methods for automation.

We hope that our work shows the benefit of making low-level knowledge about physical processes
directly accessible to agents in hypermedia multi-agent systems dealing with electromechanical instal-
lations, and this prompts further research collaboration between the engineering, Semantic Web, and
multi-agent systems communities.

Shttps://github.com/thingweb/thingweb-directory



Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

Appendix

0. IR -

i~

F'4, F'2=g(F1,F2, k)

F

_e

D —
F'Z

<«
Fy
61465 92‘)65
g F1.F2

N,
>

Figure 2: The cart pole problem is a classical example used for evaluating RL methods. But instead of a single
cart (left), if two of them were to be coupled by a spring (right) then the individual agents learning to balance the
poles would benefit from knowing the physical dependency - for example, they could exchange their individually
planned action (F1 and F2) and recompute them considering the model of the spring
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