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Abstract

Regulatory QA demands precise, verifiable answers grounded in domain text. We present a multi-agent framework
that fuses a schema light (ontology minimal) knowledge graph of subject-predicate—object (SPO) triplets with
retrieval-augmented generation (RAG). Agents continuously extract, normalize, and deduplicate triplets from reg-
ulatory documents; each triplet is embedded and stored, together with linked source segments and metadata, in a
unified vector index. At query time, triplet level retrieval aligns user intent with concise “who-did-what-to-whom”
facts and returns both the triplets and their provenance text to an LLM for answer synthesis. In complex regu-
latory queries, the system improves traceability and supports subgraph visualization, while achieving higher
strict-threshold section overlap and better graph connectivity versus text-only baselines.
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1. Introduction

Regulated domains (e.g., health and life sciences) demand high precision, verifiability, and domain
grounding in QA[1, 2, 3]. General LLMs, including recent model families [4, 5, 6], excel in language
but risk hallucinations [7, 8, 9], especially where compliance evidence and provenance are required
[10]. We propose a practical system combining: (i) schema-light triplet extraction and KG maintenance
[11], (ii) a unified vector store with triplets and source text, and (iii) a multi-agent QA pipeline that
retrieves at the triplet level and returns answers with verifiable evidence.Our contributions are based on
knowledge graph methods [12, 13, 14, 15] and regulatory KG/RAG applications [16, 17, 18, 19, 20, 21].

2. Method: Schema-Light KG + Triplet-Level Retrieval

2.1. Units, extraction, and provenance

The regulatory text is segmented into atomic sections ( ¥: C—X={xy, ..., x,,,}, then an extraction pipeline
produces SPO triplets ®(Q(C)) = {t; = (s;, p;» 0;)}. The provenance is captured by A : T— 2%, mapping
each t; to one or more source sections for auditability. Open IE and related practices inform the extraction
side [22, 23], with open-world learning and schema emergence supported by previous work [24, 25].
Canonicalization and entity linking address vocabulary fragmentation [26, 27], while ontology-driven
precedents [28] and community KGs [29, 30] motivate minimal, reusable meta-relations.
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2.2. Embedding and unified index

Each triplet #; is rendered as text f(t), embedded via a transformer encoder into ¢; € RY; we store
(e, i, Af;)) in a vector index. The density retrieval choices are inspired by DPR and modern similarity
search [31]. Queries Q are embedded as ep.
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Ask o questian:

[ 'what does fimaly submission mean. how much me do | have to report tha medical device | produce®

—

Answer

Timely submission in the context of reparting a medical device typically means adhering 1o specific deadlines and regulations set by
geverning bodies, such as the FIMA, to ensure devices are safe and effective for use. You must submit a marketing application for the
medical device, which is a formal process involving the Food and Drug Administration (FDA). The Sherman Food, Drug, and

Cosmetie Law governs medical devices, and these devices rust conform to specific regulations and standards.

Additionally, an "Ace Filer” may play a role in ¢nsuring thess responsibilities, potentially hardling submissions within the required
timeframe. Therefore, the exact time you have to report your medical device will depend on the specifics of the regulations and
guidelines outlined by the FDA and related laws that govern medical devices. It is crucial to refer 1o these guidelines to determine the

procise timeline for submission and ensure compliarce,

Ask a questian:

[v«mnﬂmﬂm

Answer

also submits information for drugs, food cantact substances, and low-i
canned foods. Additiomally, Ace Filer has obligations related to the Complete FDA Product Code, idicating that it plays a crucial part

in ensuring compliance with regulstory requirements.

Figure 1: Navigational Facility of triplets
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Figure 2: Multi-agent high-level architecture.

2.3. Triplet-first retrieval with text evidence

We compute Ty = TopK(sim(eg, ¢;,)) and recover evidence Xg = Uti €T, A(t;), then pass (Q, Ty, Xp) to an
LLM to generate the answer A. This implements RAG [11] with structured facts to reduce hallucinations
[32], and has shown utility in healthcare / pharmaceutical QA [21, 20].

2.4. Design notes

We supplement the answers with an interactive subgraph of the retrieved triplets (Figure 1) to expose
how the evidence pieces connect. This improves user trust and supports auditability. The completeness
/ consistency of T, retrieval sufficiency, and auditable provenance are central. The schema light choice
accelerates ingestion while relying on canonicalization to temper emergent vocabularies [26, 27].

3. Multi-Agent Architecture

We deploy specialized agents for ingestion, extraction, normalization/cleaning, indexing, retrieval, story-
building, and generation (Figure 2). This follows established multi-agent design principles for modularity
and scalability [33, 34, 35, 36] and is in line with recent regulatory KG/RAG systems [16, 17, 19, 18].



Table 1
Section overlap, answer accuracy (1-5), and navigation. Triplets help most at the higher overlap threshold
(6=0.75), and produce a more navigable graph (higher average degree, shorter paths).

Metric Without Triplets  With Triplets
Section Overlap @ 0.50 0.0812 0.0745
Section Overlap @ 0.60 0.2700 0.2143
Section Overlap @ 0.75 0.1684 0.2888
Answer Accuracy (avg) 4.71 4.73
Avg. Degree 1.2939 1.6080
Avg. Shortest Path 2.0167 1.3300

4. Evaluation

4.1. Protocol

We sample target sections S’ C S, build a ground-truth story per section by concatenating related
mentions, generate Q/A with an LLM, and compare our system’s retrieval and answers against these
references. This mirrors open-domain QA/RAG setups [11, 31] while focusing on regulatory corpora
[16, 19].

4.2. Metrics
|Rij,rnGij‘
‘Rij,r|

Section-level overlap. For G;; = {s;j} u M(s;;) and retrieved R;;,, O(R;j ., G;;) = , optionally with
a similarity threshold 0 for near-matches.

Factual correctness. A secondary judge (LLM or expert) marks g, consistent with the ground truth
story; structured facts are expected to reduce hallucination [7, 32].

Navigation. For sections s;; and s, € M(s;j), let T(s) be extracted triplets. We compute Nav(S") =
1 —k ZsmeeM(sij) IT(si)NT (s
% 2j=1 T et TG o)

and graph connectivity (avg. degree, shortest path).

5. Discussion and Limitations

Schema-light design. Fast ingestion and adaptability come with vocabulary fragmentation; the
emergence of selective schema plus canonicalization mitigates this [26, 27].
Extraction quality. Regulatory jargon and cross references may produce missing / noisy triplets;
iterative curation and weak supervision help. Temporal/conditional logic may need rules beyond SPO.
Efficiency. Large, changing corpora benefit from incremental updates and efficient vector/graph
indexing. The approach complements the domain-specific RAG work [21, 20] and the regulatory
deployments of KG / RAG [16, 19, 17, 18].

6. Conclusion

A schema light KG with triplet-first retrieval and textual evidence has been successfully deployed at
scale. It supports numerous compliance professionals with precise and auditable QA in regulatory
domains, addressing known LLM risks [7, 8, 9, 10], with user counts rapidly expanding across regulatory
teams (https://www.prnewswire.com/news-releases/mastercontrol-launches-ai-powered-regulatory-
chat-to-simplify-compliance-navigation-for-life-sciences-manufacturers-302533086.html). Future work
includes deeper temporal/conditional reasoning and tighter human-in-the-loop curation.
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