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Abstract
Research software (RS) plays a critical role in computational science, yet remains poorly categorized
and difficult to discover or reuse. This research explores RS classification by investigating how textual
and metadata attributes can be leveraged to develop scalable, interpretable classification methodologies.
Existing taxonomies are evaluated through alignment with scientific knowledge graphs to identify
redundancies and structural gaps. Labeled datasets are constructed by linking publications to soft-
ware repositories, and RS attributes, such as README files, abstracts, and source code features are
benchmarked using multiple machine learning models and embedding strategies. A methodology that
integrates semantic enrichment and transformer-based models is proposed for robust RS classification.
Preliminary findings highlight the informativeness of publication abstracts for classification tasks and
expose limitations in current community-defined taxonomies.
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1. Problem Statement

Research software (RS) [1] plays a fundamental role in the computational results of scientific
publications. However, the classification and integration of RS into scholarly infrastructures
remains underdeveloped. Unlike scientific publications, which benefit from standardized in-
dexing practices, taxonomies, and incorporation into scientific knowledge graphs (SKGs), RS
is typically shared via code repositories without consistent metadata, formal categories, or
semantic links to other research outputs [2].

This lack of structured classification restricts the discoverability, reuse, and proper attribution
of RS. It also limits the potential for automation as automated tools rely on machine-readable and
semantically consistent categories. Alignment with broader scientific ontologies is important
to enable cross-domain reasoning, metadata enrichment, and consistent representation within
larger knowledge infrastructures.. Addressing this gap requires a systematic approach to
understanding how RS can be categorized, what types of information are useful for classification,
and how existing semantic technologies can support this process.

This research adopts a data-driven and semantic-aware methodology to explore RS classifica-
tion, combining techniques from machine learning, knowledge graph alignment, and natural
language processing. The goal is to improve the organization, discoverability, and reuse of RS
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across disciplines by developing scalable and interpretable classification pipelines.

2. Importance

The classification of RS is a foundational step toward improving its role as a first-class research
output. As scientific inquiry increasingly relies on computational methods, software is not just
a tool but a key artifact of knowledge production. Yet, without structured categorization, RS
remains difficult to discover, reuse, cite, or integrate into broader research workflows [3, 4, 5, 6].

A classification system addresses several critical challenges and brings benefits to a wide
range of stakeholders:

• Researchers gain better access to relevant tools and methodologies, reducing duplication
of effort and enabling more rapid experimentation and collaboration [3, 6].

• Repository maintainers and curators improve the quality and completeness of meta-
data, enabling more sophisticated filtering, recommendation, and search mechanisms
[5].

• Knowledge graph builders and digital libraries benefit from richer, semantical con-
nections between software, publications, datasets, and research areas [4, 5].

• Funding agencies and institutions can better assess the impact and reuse of software
products, supporting open science policies and data management requirements [7, 5].

Scalable classification of RS is critical to managing the growing volume and heterogeneity of
repositories on platforms such as GitHub, Zenodo, and Software Heritage. It enables automation
in organization, supports semantic search, and improves tools for software discovery, citation
tracking, and recommendation.

This work also advances the FAIR principles [8], particularly Findability and Reusability, by
enriching metadata and enabling integration with scientific ontologies and knowledge graphs.
By exploring categorization through metadata, publication links, and semantic technologies,
it contributes to establishing software as a first-class, citable element of scientific output and
supports a more connected research ecosystem.

3. Related Work

RS classification draws from work on taxonomies and ontologies, dataset construction, software
attribute modeling, and classification methodologies. Below we briefly review related literature
grouped along these key dimensions.

3.1. Taxonomies and ontologies for RS and publications

Numerous efforts have proposed taxonomies to structure scientific knowledge. The Computer
Science Ontology (CSO) provides a hierarchical taxonomy of research areas in computer science
[9], and the Software Ontology (SWO) focuses on biomedical software types and versions
[10]. Papers with Code (PwC) is widely used in machine learning research to assign task- and



method-level categories to software [11]. Other domain-specific resources include EDAM [12],
used by bio.tools [13], and the AI Knowledge Graph (AI-KG) [14], which encodes AI concepts
in a semantic graph.

More general scientific knowledge graphs such as OpenAIRE [15] and the Open Research
Knowledge Graph (ORKG) [16] contain information about publications and, occasionally, their
associated software artifacts. While some of these efforts provide strong hierarchical or semantic
structures, others remain flat or sparse, with inconsistencies in labeling or concept coverage
across domains.

Many existing taxonomies suffer from semantic redundancy or domain specificity, and few
are designed to support classification tasks across disciplines. While ontology alignment has
been extensively studied [17, 18], our focus extends beyond alignment to include identifying
conceptual overlaps, redundancies, and opportunities for simplification across classification
schemes. Existing evaluation techniques rarely address these goals directly, highlighting the
need for scalable methods to assess and refine taxonomies based on their structure, coherence,
and practical utility for classification [19, 20].

3.2. Data sources and strategies for constructing software-publication datasets

Public resources such as PwC [11] and OpenAlex [21], link research papers to software im-
plementations, often using GitHub 1 or arXiv 2 metadata. Software citation initiatives like
FORCE11 [7] promote structured citation formats for software as first-class research outputs.
Efforts like SoftCite [22] focus on extracting unstructured mentions of software in publications
to build retrospective links. Repository-level metadata extraction tools such as SoMEF [23] can
automate the retrieval of README content and descriptions.

Efforts like RepoFromPaper [24] and citation intent classifiers [25] help identify and validate
links between papers and software. Surveyed techniques include DOI matching, co-author
heuristics, and bibliographic coupling [26]. However, most large-scale resources are biased to-
wards the machine learning domain or biomedicine, and rarely support multi-label classification
out-of-the-box.

While existing pipelines enable partial automation, there is little agreement on what consti-
tutes a robust software-publication link, and many datasets remain noisy, domain-specific, or
lack comprehensive label structures. Few works address the challenge of balancing or validating
multi-label datasets for classification.

3.3. Attributes and embedding strategies for RS classification

Awide range of RS features have been considered for classification: README files [27], abstracts
[26], GitHub metadata like stars and forks [28], repository descriptions [29], and code-level
features. Works like HiGitClass [30], LabelGit [31], and ClassifyHub [32] benchmark different
metadata properties, with varying success across datasets and embedding methods.

In terms of representation, TF-IDF remains a baseline technique for capturing term salience
[33], while contextual models such as Sentence-BERT [34] and CLIP [35] offer semantic em-
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beddings for unstructured text. These embeddings are often evaluated using classification or
clustering metrics such as silhouette score [36] or F1-score to assess discriminative power.

There is no consensus on which software attributes generalize best across domains, and most
existing studies only benchmark combinations of attributes on a small subset of models or
datasets. Moreover, interpretability and attribute redundancy are rarely examined in-depth.

3.4. Classification methodologies and semantic enrichment

Several recent works explore enriched classification pipelines that incorporate ontological
information, transformer models, or model interpretability techniques. SKG-based classifiers,
such as the CSO Classifier [37], leverage semantic types and hierarchical context. Other methods
integrate zero-shot or few-shot LLMs [38], or apply SHAP values [39] to understand feature
contributions. Hybrid approaches like AIMMX [29] and SoftCite+NER [22] show that combining
ML with domain knowledge improves classification quality in scientific contexts.

Despite this progress, methodological reproducibility remains a challenge, as pipelines are
often highly domain-specific and rely on partially annotated or curated inputs. Most pipelines
are not reusable outside their source datasets or domains, and they rarely compare multiple
models under a shared experimental framework. Furthermore, the cost and scalability of
semantic enrichment, particularly when integrating LLMs or large SKGs, are underexplored.

4. Research Questions

This doctoral research addresses the overarching question: How can we classify research
software (RS) into categories that support findability, reuse, and analysis? To investigate
this problem, the work is structured around the following research questions:

RQ1: How can we identify suitable categories to classify RS?
This involves analyzing and aligning existing taxonomies (e.g., PwC, CSO, SWO) and evaluating
their coherence through clustering and semantic similarity.
Contribution: A comparative analysis of RS taxonomies, highlighting overlaps and gaps, incon-
sistencies, clustering quality and proposing an evaluation framework to assess their conceptual
clarity. This is combined with a methodology for evaluating taxonomies and exploring auto-
mated techniques to enrich them with additional software-related terms.

RQ2: How can we (semi)automatically build a labeled dataset of RS and categories that is
reliable, reusable, and representative?
This includes linking software repositories to publications, handling multi-label assignments,
and mitigating class imbalance.
Contribution: A curated dataset linking RS to publication-derived categories, along with a
reproducible methodology for extending this dataset to new domains or knowledge graph
structures.

RQ3: Which textual and metadata attributes are most informative for classifying RS?
Attributes such as README content, abstracts of linked publications, metadata, and source
code features are benchmarked for classification effectiveness.
Contribution: A benchmarking framework that evaluates different RS attributes and their
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Figure 1: Overview of the RS classification workflow and dataflow across research questions. Each
component feeds into the next, from taxonomy design to dataset construction, attribute analysis, and
methodology integration.

combinations for classification across multiple models and metrics, and a method for identifying
the most informative and complementary features.

RQ4: How can we design a methodology for RS classification?
The methodology should combine traditional machine learning and transformer-based models
with semantic enrichment techniques, including knowledge graph alignment and potentially
large language models (LLMs).
Contribution: A methodology that integrates semantic knowledge graphs and machine learning
for scalable and interpretable RS classification.

5. Preliminary Results

The preliminary results of this research provide early validation for each of the four RQs,
which are also visually connected in Figure 1. This figure illustrates the logical flow between
research questions: RQ1 defines the classification targets, RQ2 constructs the labeled dataset,
RQ3 assesses the predictive value of different attributes, and RQ4 integrates these components
into a coherent classification methodology. Each RQs were explored at a high level in earlier
work during my Master’s thesis [40], which motivated the structure of the present thesis. We
detail the research questions with preliminary work below. The methodology design for RQ1,
RQ2 and RQ3 has been implemented and partially tested, although the full analysis is still in
progress. RQ4 remains part of future work.



5.1. RQ1: Taxonomy Evaluation and Alignment

Preliminary work on RQ1 resulted in the alignment of 71 Papers with Code (PwC) categories [11]
to concepts in the Computer Science Ontology (CSO) [9] and OpenAlex [21] using cosine simi-
larity between Sentence-BERT (SBERT) [34] embeddings and manually curated mappings. This
work, published in our NSLP 2024 paper [41], revealed conceptual redundancies in community-
defined labels and helped identify opportunities for consolidation and enrichment through
scientific knowledge graph (SKG) alignment. Further evaluation using clustering metrics—such
as silhouette score [36], Davies-Bouldin index [42], and Dunn index [43], on category embed-
dings confirmed low intra-class cohesion for several overlapping categories, particularly in
NLP-related tasks like “text-classification” and “sentiment-analysis.” This supports RQ1 by
showing that some categories lack semantic distinctiveness, highlighting the need to refine or
merge them for effective classification.

One example from our SKG alignment analysis involves the category “lasso (programming
language)” in OpenAlex, which was frequently associated with papers that, in fact, addressed
“lasso (statistics),” a regression technique. Although the paper content clearly referred to
statistical methods, the label misalignment led to incorrect categorization across knowledge
graphs. This example underscores the importance of validating category assignments through
semantic similarity and expert review, especially in ambiguous or overloaded terms. It also
illustrates the potential of embedding-based methods to detect such inconsistencies and guide
taxonomy refinement.

5.2. RQ2: Dataset Construction from RS–Publication Links

To address RQ2, a preliminary labeled dataset was constructed using paper–code links from
PwC [11]. From these links, publication abstracts, GitHub metadata (e.g., repository titles,
stars, forks), and README files were extracted using the GitHub API and the SOMEF tool
[23]. Community-curated sources such as Awesome Lists and partially annotated links from
knowledge graphs were also considered to expand coverage. Instances with multiple labels
were filtered to simplify the task to a multi-class setting, as a first step toward building a reliable
multi-label dataset. This approach draws on techniques validated in my master’s thesis [40],
where semi-automated linking workflows were manually evaluated for precision and coverage.
These early results confirm the feasibility of paper–code dataset construction but also highlight
the need for more scalable, automated methods for multi-label assignment and balancing for
the categories selected in the previous step. The next step involves extending the dataset to
more domains and integrating confidence estimation mechanisms for noisy links.

In this context, a multi-label assignment refers to cases where a software repository is
associated with several scientific categories—for example, a tool for generating datasets using
synthetic data may fall under both Data Augmentation and Simulation. Such overlap reflects
real-world interdisciplinarity but introduces modeling complexity. Additionally, the dataset
is affected by class imbalance: high-frequency categories like Computer Vision dominate the
corpus, while others such as Anomaly Detection or Graph Learning are underrepresented.
This imbalance can lead to biased models that generalize poorly to rare classes. We plan to
mitigate this through undersampling of dominant categories during training and by exploring



reweighting and augmentation strategies to achieve a more balanced representation across
labels.

5.3. RQ3: Attribute Benchmarking for Classification

. Initial experiments compared RS attributes using a stratified One-vs-Rest classification pipeline
[44] with undersampling. Features included README content, publication abstracts, GitHub
titles, and keyword metadata. Textual data was embedded using TF-IDF [33], Sentence-BERT
[34], and CLIP [35]. Ongoing work suggests that publication abstracts consistently yield the
highest macro-F1 scores across all embedding methods, indicating they are the most informative
individual attribute. These experiments provide initial evidence to guide the prioritization
of textual features in classification pipelines. Next steps include extending the evaluation to
combinations of attributes, introducing code-level features, and analyzing feature contributions
using interpretability techniques such as SHAP [39].

6. Evaluation Plan

The evaluation follows the four RQs, each targeting a core challenge in RS classification. We
use a mix of quantitative and qualitative methods, with metrics tailored to relevant areas
such as ontology alignment, clustering, dataset construction, and classification. The following
subsections outline the strategy for each RQ.

6.1. RQ1: Evaluating RS Categories with Taxonomy Alignment and Clustering

To assess the quality of existing taxonomies for classifying RS, we will apply a quantitative on-
tology alignment methodology introduced in our NSLP 2024 paper [41]. This method evaluates
alignments based on structural coverage, term overlap, and semantic coherence, providing a
scalable and interpretable way to compare taxonomies and knowledge graphs such as OpenAlex
[21], OpenAIRE [45], the Open Research Knowledge Graph (ORKG) [16], Papers with Code
(PwC) [11], the Computer Science Ontology (CSO) [9], and the Software Ontology (SWO) [10].
Unlike manual or gold-standard comparisons, this approach enables a data-driven assessment
of taxonomy compatibility and conceptual clarity.

To assess the intrinsic coherence of the categories themselves, we will analyze how well
they form clusters based on their semantic representations. Specifically, we compute clustering
quality metrics such as the Silhouette Coefficient [36], the Davies-Bouldin Index [42], and the
Dunn Index [43] on embeddings of category descriptions. High scores on these metrics indicate
that the categories capture semantically distinct and internally coherent groupings, which is a
desirable property for any classification scheme.

6.2. RQ2: Evaluating the Construction of a Labeled RS Dataset

To evaluate the linking between software repositories and scientific publications, we will assess
existing techniques that use metadata matching based on DOIs, author names, repository URLs,
and citation contexts [46]. Methods such as heuristic-based string matching and bibliographic



coupling [26] will be considered. In addition to automated techniques, we will review existing
community-curated resources such as Awesome lists [47], and note that some scientific knowl-
edge graphs, such as OpenAIRE [45] and ORKG [16], store software-publication links. However,
coverage is limited and biased toward recent publications. We will evaluate the precision, recall,
and F1-score of these mappings against a manually curated standard to assess their reliability.

To ensure that the dataset supports multi-label tesks, we will analyze the co-occurrence of
labels per software instance. Wewill compute statistics such as label cardinality and label density
[48] to confirm the multi-label nature of the data. To assess label balance, we will examine the
frequency distribution of individual and co-occurring labels. Skewness and long-tail effects will
be quantified using metrics like the imbalance ratio and entropy across label frequencies [49].
If imbalance is found, we will consider balancing strategies during dataset construction.

6.3. RQ3: Evaluating Informative Attributes for RS Classification

RS can be represented using textual and metadata attributes. Common textual sources include
README files [27] and publication abstracts [26], while GitHub metadata, like repository title
and descriptions reflect community contributions [28]. Source code features such as function
names and comments may provide technical insight but are more complex to extract.

We will benchmark each attribute, individually and in combination, across various machine
learning and transformer-based models to assess their contribution to classification performance.
For textual features, we will use embedding strategies from TF-IDF [33] to Sentence-BERT [34]
and CLIP [35]. Evaluation will include precision, recall, F1-score, and SHAP-based attribution
[39]. We aim to identify compact yet informative feature sets and assess trade-offs between
informativeness and extractability. We will also compare these approaches with large language
models to understand their added value under resource constraints.

6.4. RQ4: Evaluating the RS Classification Methodology

To evaluate the proposed classification methodology, we will measure both model performance
and and its ability to generalize across different datasets. Performance will be assessed using
macro-averaged F1-score, accuracy, and AUC-ROC across different classifiers, including tradi-
tional machine learning models and transformer-based approaches such as BERT [50]. We will
evaluate the generalizability of the method by training on one labeled dataset and testing on
another (cross-dataset transfer).

The added value of semantic enrichment through knowledge graphs (e.g., CSO, AI-KG) will be
evaluated by comparing classification performance before and after enrichment. If LLM-based
embeddings or entity linking are used, their contribution will also be isolated and measured.
Finally, scalability and efficiency will be evaluated using time and memory usage benchmarks
during training and inference, ensuring the methodology is applicable to real-world, large-scale
scenarios, as suggested in prior work on semantic web systems [51].



7. Reflection and Future Work

This work provides a foundation for RS classification by combining metadata benchmark-
ing, taxonomy evaluation, and semantic alignment through knowledge graphs. Preliminary
results demonstrate the feasibility of using abstracts for classification, highlight structural
inconsistencies in current taxonomies, and confirm the potential of SKG alignment to enhance
interpretability.

However, several challenges and limitations remain. Repository metadata is often sparse or
inconsistently maintained, limiting its reliability as an input source. Many existing taxonomies
lack clear definitions or consistent granularity, complicating automated classification. A key
assumption is that textual representations like READMEs or abstracts reflect a software’s actual
functionality and domain—yet this is not always the case, as documentation can be outdated or
incomplete. The evolving nature of software also introduces subjectivity: a repository may span
multiple domains over time, or its README may no longer correspond to its latest capabilities.
Additionally, while large language models offer promising results, their performance is sensitive
to domain shifts and their outputs can be difficult to interpret. Semantic alignment using SKGs,
though valuable, still requires manual validation to ensure accurate mappings.

Future work includes scaling the dataset to support multi-label classification, refining the
proposed taxonomy based on clustering and alignment results [36, 51], and further exploring
LLMs in few-shot settings [38]. Additional integration with platforms like OpenAIRE [45],
Software Heritage [52], and Wikidata [53] is planned to promote interoperability and reuse.
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