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Abstract
Current time series models often operate solely on sensor data, lacking the contextual understanding that domain
knowledge provides. This limitation particularly exists in domains like maritime operations or medical monitoring,
where sensor data are often noisy, incomplete, or ambiguous. To address this gap, this doctoral research proposes a
hybrid learning framework that integrates semantic knowledge from ontologies, domain texts, and expert-defined
rules into the modeling process as formal constraints. The framework comprises three main building blocks:
(1) learning joint representations from heterogeneous sources such as time series, structured knowledge, and
unstructured text; (2) extracting and formalizing semantic knowledge into symbolic or functional constraints; and
(3) fusing these components into a hybrid framework, where formal constraints complement machine-learned
patterns. Initial work has been conducted in the maritime domain and will be extended to medical datasets for
cross-domain evaluation.
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1. Problem Statement

Current machine learning (ML) models for time series analysis, particularly in domains such as mar-
itime operations and medical monitoring, rely heavily on dynamic sensor data. This data is typically
collected in real-time and processed by ML models such as Recurrent Neural Networks (RNNs) [1, 2] or
Convolutional Neural Networks (CNNs) [3]. While these models have achieved notable success, they
also exhibit critical limitations in practical applications.

In many real-world scenarios, sensor data is prone to intermittency, incompleteness, and distortion
due to operational or environmental noise [4, 5]. For example, wearables may temporarily lose signal
due to movement artifacts, or shipboard sensors may malfunction due to mechanical stress or weather
interference [6, 7]. As a result, the training datasets for such systems often lack completeness and
reliability. Although data preprocessing techniques mitigate various data quality issues, the resulting
preprocessed data often still lacks natural completeness that reflects the inherent richness and context
of real-world information [8]. This data sparsity and noise inevitably degrade model generalization,
reducing performance in downstream tasks like anomaly detection and predictive maintenance [9, 10,
11].

This existing lack of contextual inclusion in data processing highlights a critical blind spot in many
model architectures: the underutilization of static, semantically rich knowledge available in textual
or structured formats. This includes, for instance, operational manuals, domain-specific ontologies,
technical specifications, and guidelines created by experts. Although these sources encode essential
relationships, behavioral patterns, and domain logic, they are rarely incorporated into ML pipelines
[12]. Consequently, models must learn context purely from the available data samples, often without
any external guidance. This limitation hinders their ability to make informed predictions in ambiguous
or data-deficient situations [13].
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In contrast, physics-informed neural networks (PINNs) [14] as part of the emerging field of physics-
enhanced machine learning (PEML) [15] have demonstrated the value of embedding domain knowledge
directly into model training. PEML strategies use features derived from physical laws and expert
knowledge to constrain and guide the model’s learning process, resulting in improved interpretability,
robustness, and performance, especially in low-data regimes [15, 16].

Despite progress in both data-driven and knowledge-informedmodeling, a central unresolved problem
remains: there is currently no systematic approach for jointly modeling heterogeneous knowledge
sources, such as dynamic sensor data, domain texts, ontologies, and structured guidelines, within
a unified learning framework. Existing methods often isolate these sources, failing to capture the
complex interactions between temporal patterns and domain logic. This disconnect limits the ability of
models to leverage rich semantic context during learning, particularly in scenarios where data is sparse,
ambiguous, or noisy. As a result, ML systems struggle to generalize beyond surface-level patterns and
lack the interpretability required for critical decision-making environments.

An approach to fill this gap could significantly advance the field of Prognostics and Health Man-
agement (PHM) [17] by enabling more context-aware and interpretable anomaly detection systems.
Such systems would be particularly valuable in domains like maritime operations, where PHM tools are
most effective when used in collaboration with human operators [18]. Embedding semantic knowl-
edge could help bridge the gap between data-driven models and expert reasoning, supporting better
decision-making. In practice, this may lead to earlier detection of failures, reduced maintenance costs,
and fewer unexpected downtimes. For the research community, the proposed direction offers a novel
pathway toward integrating symbolic knowledge with temporal learning models, which paces the way
for more robust, human-aligned AI systems.

2. Related Work

Until the introduction of the Transformer architecture by Vaswani et al. [19], (RNNs) [1, 20, 21] and
their gated versions, such as Long Short-Term Memory networks (LSTMs) [22, 23] were the state of the
art for modeling temporal dependencies in ML [24, 25]. However, they suffer from inefficiency, as they
require complex computational efforts for recurrence [24]. Transformers, on the other hand, emerged
in 2017 as a more efficient way to learn long-range dependencies. Although their original design and
primary application were in natural language processing and large language models (LLMs), they have
also shown strong performance on time series tasks [26, 27, 28].

To enhance the performance of downstream tasks following a Transformer-encoder by involving
semantic information, a model must embed the semantic data with the underlying time series inputs.
One approach that addresses the challenge of integrating semantic information into sequential data
is GraphCare [29]. This framework focuses on healthcare prediction using electronic health records
(EHRs) by constructing personalized knowledge graphs for each patient. To do so, GraphCare uses both
external biomedical knowledge bases and LLMs to extract concept-specific subgraphs, which are then
composed into individual graphs that capture temporal and relational context. GraphCare demonstrates
how semantic structures from LLMs and knowledge graphs can enhance the predictive performance of
time-aware models in a real-world use case [29]. In addition to approaches like GraphCare, a growing
number of methods have explored the integration of LLMs into time series modeling to inject semantic
context into learning pipelines [30, 31, 32, 33]. One such approach is presented below to demonstrate
how to embed semantics with time series data in detail.

The Language Time series Model (LTM) framework [30] enhances multiple tasks of time series
analysis (e.g., forecasting, imputation, anomaly detection) by combining temporal data with semantic
context from large language models (LLMs). First, user prompts are enriched using external knowledge
sources via a knowledge graph and GraphRAG [34] retrieval, forming contextualized instructions.

These prompts are embedded and fused with time series patches through the Fusion-Aware Temporal
Module (FATM). The alignment between natural language prompts and time series patches is not learned
through supervision but rather through a combination of the chosen model architecture and extension



of the loss function. To enable this, the model initially assumes that the prompt is relevant to all time
series patches. Without labeled assignments, it learns to distinguish which prompt-patch relationships
are significant through training step by step. Hao et al. [30] are adding the cosine similarity term to the
loss function, which encourages the model to combine prompts and embedded patches semantically.
This setup allows the model to implicitly learn which parts of the prompt are most relevant to different
segments in the time series while being guided by the performance of the selected task.

The LTM framework demonstrates how domain knowledge can be effectively integrated with time
series data through semantic prompts and learning based on a shared latent space. It shows that
a meaningful connection between language and temporal patches can be created without explicit
supervision, but only guided by task performance and the architecture of the model. Their approach
also shows how the manipulation of the loss function with contextual similarity information can
increase the overall performance [30].

However, the potential of the loss function extends beyond learning contextual relationships. It
also offers an effective approach for embedding external knowledge that can actively regulate and
constrain model outputs. This becomes clear when comparing the approach to Physics-Informed Neural
Networks (PINNs) [14], which oftentimes embed physical laws directly into the training process by
incorporating differential equations or boundary conditions into the loss function. Instead of learning
only from data, PINNs are guided by domain-specific constraints, which serve as a form of supervision
and improve generalization, especially in data-scarce scenarios [14]. Inspired by this principle, semantic
rules, expert-defined guidelines, or logic-based structures that are derived from language or symbolic
reasoning could similarly serve as a form of prior knowledge to guide model behavior. This motivates
the idea of generating explicit equations or constraints from semantic sources and incorporating them
into time series learning, similar to how physical constraints guide PINNs.

3. Research Questions

Building on the identified challenges in integrating contextual knowledge into time series modeling,
this early-stage research aims to answer the following guiding question:

Research Question: How can a knowledge-guided hybrid learning framework for time series data
be designed to jointly analyze heterogeneous data sources and semantic knowledge?

This main research question can be broken down (see Figure 1) to guide the research process:
RQ1 – Semantic Representation. How can heterogeneous input types, such as time series, un-

structured text, and structured knowledge, be embedded together within a transformer-based model to
enable integrated contextual representation learning?

This part explores methods for fusing multimodal sources into a unified semantic representation and
forms the necessary basis for the work on RQ2. The aim is to encode domain logic and contextual cues
alongside raw temporal signals to improve downstream learning performance. The main challenge lies
in integrating a highly diverse range of knowledge sources, each of which is typically handled by a
separate solution. As illustrative examples, the SHIP ontology [35], which extends SSN/SOSA [36, 37],
and together with the MontoFlow framework [35], can be used to instantiate both static and dynamic
sensor data. OTMKGRL [38] provides a strategy for embedding visual and textual inputs into a shared
space. RDF2Vec [39] applies language modeling techniques to RDF graph walks to produce embeddings
of structured knowledge. OWL2Vec [40] enables the transformation of ontological structures into vector
representations. JOIE [41] allows for the joint embedding of ontological concepts and instance-level
data within a unified latent space.

Figure 1 visualizes the approach by processing time series (x) and semantic data (y) in parallel, by
first patching the time series data and then embedding both parts. After that, the time series need to
be combined with their matching semantics. This can be achieved by a classification or similar task.
The unified representation is then fed into a transformer encoder to jointly embed the input to learn
relations and give time series data a semantic context.



Figure 1: A graphical representation of the PhD thesis. Directional arrows show the data flow through the
model. Red dashed boxes divide the model into the individual research questions.

RQ2 – From Time Series and Semantics to Formal Constraints (main focus). How can
time series data and semantic knowledge extracted from domain texts be translated into formalized
constraints that guide the learning process in time series models?

RQ2 is the main focus of this PhDwork and explores how to extract rules, dependencies, or constraints
from the input data and formalize them (e.g., differential equations or symbolic logic rules). It remains
an open design decision to determine which parts of the input can be used for the equation. Hence,
Figure 1 shows time series (x), semantics (y), and joint embeddings (z) as possible inputs. It still
needs to be investigated which method is most suitable for generating a formal representation. As
for now, we call the formal constraint learning the ”black-box” (p), which is further discussed below.
Possible approaches include the use of regressors, symbolic mathematical models, physically inspired
formulations, or hybrid strategies that combine these elements.

Building on these general strategies, recent advances in symbolic regression (SR), such as Sparse
Identification of Nonlinear Dynamics (SINDy) [42], Python Symbolic Regression (PySR) [43], and their
improved variants, provide a principled starting point for discovering candidate formulas and constraints
that capture dependencies in multivariate time series. In our framework, leveraging state-of-the-art
techniques from other domains, these methods can discover compact, interpretable relations among
observed variables and learned embeddings, which can be encoded to guide the predictive model
[44],[45]. One of the ways to build closed-form symbolic relations from the data is to pair SR with
neural components in a hybrid setup (for example, neural features or derivative estimates feeding PySR,
SINDy, or neural guidance over operator libraries), so that the network learns rich representations,
while the symbolic module recovers closed-form structure.

In parallel, we aim to formalize z (semantic knowledge from domain text units, invariants, bounds,
and monotonicities or temporal relations), as machine-checkable constraints (algebraic equalities or
inequalities, dimensional-consistency rules, or temporal logics). Thus, the integration of SR, neural
representation learning, and semantics fulfills RQ2 by converting time-series and domain semantics
into formal constraints and improving generalization while yielding interpretable inductive biases.



RQ3 – Fusion toHybridModel. How can amachine learningmodel and a formalized representation
of system behavior be integrated within a hybrid architecture to complement each other and enhance
generalization performance?

It is unlikely that a complete and precise formulation of system dynamics can be derived purely from
the available data. Therefore, RQ3 merges the joint embeddings (z) and formal components (p(x,y,z))
developed in RQ1 and RQ2 into a hybrid architecture with a complementary ML model, needed to
learn what cannot be explicitly defined (c(z)) to capture subtleties, exceptions, and context-dependent
variations. The constraints, learned from the black box (p), would act as functional regulators within
the model (c) that guide the learning process and constrain predictions in a way that aligns with expert
reasoning and domain logic. Combining both techniques enables a hybrid system that benefits from
the strengths of explicit reasoning and data-driven adaptability. To enable this integration, the formal
expressions may be incorporated into the model either as architectural components in the form of
constraint-aware layers or through modifications to the loss function. Loss-function–based approaches,
as seen in Section 2, enforce domain-aligned behavior, which allows the formal representation to actively
guide the learning process alongside the data-driven components.

The motivation behind this approach is taken from PEML. PEML integrates domain knowledge and
physical principles into data-drivenmodels to overcome the limitations of relying solely on observational
data, particularly the inability to generalize well to unseen scenarios. These kinds of hybrid approaches
incorporate various forms of knowledge, from domain expertise and empirical observations to first
principles and mathematical formulations, by embedding observational, learning, inductive, model form,
and discrepancy biases [46]. Such biases enable models to achieve the “inductive leap,” guiding them
toward physically meaningful generalizations beyond what is strictly inferred from training data [47].
Depending on the strategy, physics can be integrated in different ways [15]. For example, 1) Physics-
Guided ML leverages detailed physics-based models as the backbone, refining them with data to identify
latent parameters and improve predictive accuracy. Examples include probabilistic model updating
strategies [48]. 2) Physics-Informed ML constrains data-driven models with physics-based laws and
biases, ensuring solutions remain physically plausible, with examples including models like PINNs [49].
3) Physics-Encoded ML embeds physics directly into the structure of the algorithms, examples including
PhI-SINDy [46]. By combining these strategies, PEML accelerates training, enhances generalization
under limited data conditions, and ensures that models remain consistent with established scientific
understanding while retaining the flexibility of modern ML techniques.

4. Preliminary Results

As a foundational step toward the hybrid framework, we have already gained access to maritime
sensor datasets collected from multiple Search and Rescue (SAR) vessels. These datasets contain time
series covering hundreds of onboard sensors, which have been recorded over several years with high
temporal resolution. Based on these data and domain requirements, we developed an extensible semantic
modeling framework called MontoFlow, which is centered around the SHIP Ontology [35].

The SHIP Ontology is a domain-specific extension of the W3C SSN/SOSA standard [36, 37], which
provides a rich semantic model of ship sensors, components, and operational context. It introduces
concepts such as anomaly observations, value thresholds, and sensor classifications that describe the
structure and behavior of maritime systems. MontoFlow connects this ontology with dynamic sensor
data using a dual instantiation pipeline: MontoFlow-Static allows for structured ABox population
from tabular configuration files, while MontoFlow-Dynamic enables real-time semantic querying over
telemetry streams via virtual RDF mappings using Ontop.

Together, SHIP and MontoFlow support RQ1 by enabling the semantic integration of time series data
with structured domain knowledge. For RQ2, SHIP provides a vocabulary for identifying domain rules
that can be formalized into constraints. Initial results show that the framework allows for real-time
semantic enrichment of sensor data, laying the foundation for embedding expert knowledge into time
series models.



5. Evaluation

This work implements an evaluation strategy that regards multiple levels to assess the validity of the
proposed hypotheses and to answer the research questions systematically. Each research question will be
addressed through targeted experiments in both use cases: maritime operations and medical monitoring.
The perspective from both domains allows us not only to analyze the behavior of the proposed methods
across different data modalities but also their generalizability across different application contexts.
Evaluation of RQ1 – Semantic Representation. As a foundational step, we test whether the

integrated model can learn context-aware representations from heterogeneous inputs, including time
series, structured knowledge, and unstructured text, in order to evaluate the effectiveness of the semantic
representation strategy. This will be done by comparing downstream task performance (e.g., anomaly
detection or forecasting) with and without the integration of semantic components based on a compact
ship sensor dataset and structured sources, like the SHIP ontology.

After successfully proving the effect, a large dataset of ship sensors will be combined with extended
unstructured content like maintenance manuals. The expectation is that the added context will improve
the model’s ability to identify abnormal engine states or faulty processes. Finally, in the medical domain,
wearable glucose sensor data will be combined with medical guidelines, ICD-10 codes, and patient
records. In this case, we expect a more accurate detection of early hypoglycemic events due to the
added semantic context.

The results from this step are crucial for enabling the main investigations in RQ2.
Evaluation of RQ2 – From Time Series and Semantics to Formal Constraints. To evaluate

whether time series data and semantic knowledge can be translated into formalized constraints that
effectively guide model learning, we conceptualize a two-step evaluation process:

As the central focus of this work, we first compare the solutions against known ground truth of
established mathematical models, like fuel efficiency in maritime systems [50] or the glucose-insulin
dynamics in medical monitoring [51]. This comparison allows us to assess symbolic and semantic
similarity, as well as to validate whether the extracted constraints capture meaningful relationships
recognized by domain experts.

Next, we treat the extracted constraints as predictive functions and test their behavior against real-
world sensor data. Their accuracy can be assessed by using standard metrics (e.g., RMSE, MAE, R²).
This helps determine the extent to which the formalized representation approximates real-world system
behavior under varying data conditions.

The insights gained here are expected to play a key role in shaping the hybrid architecture evaluated
in RQ3.

Evaluation of RQ3 – Fusion to Hybrid Model. The third research question focuses on how well
the formal knowledge representations and ML components can be fused into a hybrid architecture. To
evaluate this, we will benchmark the hybrid model against standard baselines such as Transformers and
LSTMs that operate without semantic integration. The evaluation begins with maritime sensor data,
where the hybrid model will be tested in scenarios such as engine diagnostics or anomaly detection. In
the second step, we transfer the approach to medical datasets that include patient profiles and glucose
sensor data – data that is often incomplete or noisy. This progression allows us to assess how well the
hybrid model generalizes across domains and data qualities. Indicators to evaluate the performance will
include predictive accuracy, robustness to missing values, and adaptability across the two mentioned
domains.

Baseline Comparison with LLMs. Recent advances in LLMs have made them a valuable tool for a
wide range of tasks [52, 53], and we intend to leverage this opportunity by using them as a common
baseline throughout our research. By systematically comparing our methods against LLM-based
baselines, we can track and quantify the improvements achieved over each task section.

We assume that LLMs offer a promising approach for extracting formal constraints, thanks to their
ability to capture contextual relationships in complex domains, thereby positioning them as a natural
point of reference across the research questions and the pipeline as a whole.



For RQ1, LLMs could serve as a baseline for semantic representation and context integration by
matching time-series data patches to their affiliated semantic descriptions. As an additional baseline,
structured knowledge may be linearized into natural language statements and embedded with an LLM,
allowing a direct comparison with specialized graph-based embedding methods such as RDF2Vec,
OWL2Vec, or JOIE. For RQ2, we will employ LLMs to extract formal constraints from text and assess
their effectiveness relative to alternative hybrid PySR and SINDy approaches. For RQ3, LLMs will be
used as a baseline model for predicting use-case related events (e.g., hypoglycemia, due dates for ship
maintenance) based on text. The results are compared against those obtained from a model using only
time series data, as well as from the hybrid approach. This strategy allows us to evaluate the added
value of integrating formal knowledge representations with machine learning components.

Overall, the evaluation will assess whether semantic integration improves performance, interpretabil-
ity, and robustness. Success is defined by outperforming baselines, leveraging meaningful constraints,
and maintaining reliability under real-world conditions. Ultimately, the goal is to support more trans-
parent and context-aware AI across domains.

6. Reflection and Future Work

Despite the potential of the proposed hybrid framework, there are limitations that must be taken into
account. First, the alignment between the semantic knowledge and time series data remains challenging.
Time series data rarely comes with labels. As a result, assigning relevant semantic annotations to
specific segments of a time series requires manual effort. This limits the automation and scalability of
the approach.

Second, the availability and quality of domain knowledge vary across domains. While maritime
systems offer relatively accessible technical documentation and structured sensor descriptions, medical
knowledge often exists in unstructured, proprietary, or fragmented formats. If they are available, they
are not machine-readable or formalized most of the time.

Third, although the hybrid model aims to increase interpretability by incorporating structured
knowledge, the data-driven model still operates like a black-box. This means, in practice, that this part
of the framework remains difficult to interpret.

These limitations do not invalidate the approach, but they highlight areas where further method-
ological refinement is needed. The next phase of this work will focus on the first steps of the proposed
framework (see Figure 1). A first step involves developing a method for segmenting time series data
into meaningful patches. This process is either based on fixed intervals or event-driven. The latter is
the more promising approach. Further investigation into semantic representation techniques will be
done. These include the proposed options in Section 3, among others that we identify during research.

To strengthen the formal components of the model, PINNs will be further explored for techniques
that reveal how to derive formal representations from input data. With regard to the data side, maritime
datasets will be prepared with annotated events, while public medical datasets, like MIMIC-III or
OhioT1DM, will be reviewed with a focus on glucose signal availability and quality.
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