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Abstract
We investigate how large language models (LLMs), when paired with personalized knowledge graphs (PKGs),
can power decentralized recommendation systems. This work lays the groundwork for more intelligent and
user-aligned personal digital assistants that respect user autonomy and data sovereignty. A key focus of our
research is exploring how LLMs can be fine-tuned in federated settings to balance personalization with privacy.
To this end, we evaluate several fine-tuning methods and compare their performance to select the best one. Early
results indicate that LLMs fine-tuned to use PKGs can outperform symbolic and embedding-based KGC models
(e.g., KBGAT, HAKE) in both centralized and federated contexts, and that fine-tuning with Kahneman-Tversky
Optimization (KTO) is more resilient to lopsided data distributions.
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1. Problem Statement

Current recommendation systems are centralized, opaque, and dependent on collecting and analyzing
large volumes of user data. This creates several critical challenges:

• Privacy Risks: Users must relinquish control over personal data to centralized servers, often
owned by large companies. In addition to trusting these companies to use their data responsibly,
they must also trust them to protect their data. These servers become high-value targets for
malicious actors, increasing the risk of data breaches and unauthorized surveillance.

• Scalability Constraints: As the user base grows, centralized data infrastructures must scale
accordingly, demanding increasing storage, computational power, and bandwidth. This makes
it difficult for smaller companies or organizations with limited resources to develop or deploy
recommendation systems.

• Lack of Interpretability and Control: Most current systems operate as black boxes, offering
little transparency or control to users. As a result, users are often unaware of why certain
content is recommended to them and have minimal ability to influence or adjust the underlying
decision process. This can reinforce Personalized Information Environments (PIEs), where
recommendations are narrowly tailored, limiting exposure to new content and creating a filter
bubble.

We propose a privacy-preserving, scalable, and semantically interpretable recommendation system
using a Large Language Model (LLM) trained via federated learning (FL) [1]. Instead of aggregating raw
user data centrally, our approach enables local, privacy-aware model training. Each user maintains a
personalized knowledge graph (PKG), a human- and machine-readable structure of entities and relations
based on user interactions and preferences. The PKG evolves over time as the user engages with the
system, particularly through conversations with the LLM.

For instance, consider a user interested in movie recommendations. Their PKG might initially contain
a preference for ”Raiders of the Lost Ark (1981)”. After they tell their assistant they enjoy Harrison
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Ford’s work, the system recommends another of his movies, like ”What Lies Beneath (2000)”. If the
user accepts this suggestion, their PKG is updated to reflect this new preference. Later, when the
user’s device participates in a round of federated learning, the model is fine-tuned locally on this new
interaction. The resulting model updates are sent to a central server for aggregation. Because the user’s
specific preferences never leave their device, their privacy is preserved, while the aggregated global
model still learns general patterns, such as the connection between different Harrison Ford movies,
benefiting all users.

Because PKGs are interpretable and adaptable, users can both understand and influence how their
data informs recommendations. The system can be flexibly tuned to specific recommendation contexts.
They can also be designed to deliberately disrupt PIEs by adapting preference patterns within the PKG.

2. Importance

Why is this problem important and for whom?

This problem has broad societal relevance, impacting virtually all users of modern digital platforms. For
individuals, it concerns the fundamental right to privacy, transparency, and control over personal data.
Furthermore, exploring a variety of content enriches a user’s experience. For organizations, especially
smaller companies and startups, it presents a barrier to entry due to the infrastructure requirements
and legal risks of handling sensitive user data.

Who will benefit and who should care?

• Users gain enhanced privacy, transparency, and agency over how they are profiled and marketed
to.

• Companies and organizations benefit from reduced infrastructure costs and data liability, making
advanced recommendation systems more accessible to smaller players.

• Researchers interested in privacy, personalization, fairness, and human-computer interaction
gain a novel paradigm for user modeling and recommendation.

What is the impact of solving this problem (for the research community, or society in
general)?

Solving this problem could democratize access to recommendation technology while restoring trust
in digital systems. It fosters user empowerment through interpretable data structures and safeguards
personal data by eliminating the need for centralized storage. From a societal perspective, it combats
the dangers of algorithmic echo chambers by enabling users to actively shape their digital experiences.
From a research perspective, it introduces a hybrid model that combines language-based reasoning
with structured, user-owned knowledge, contributing to the evolution of federated and interpretable
AI. This approach aligns with recent perspectives that unifying KGs and LLMs can combine their
respective strengths: the factual knowledge and interpretability from KGs with the advanced reasoning
and language abilities of LLMs [2].

3. Related Work

Has a solution to this problem been attempted before and how?

Prior work has explored key components of our proposed system—namely, knowledge graph completion
(KGC), FL, and recommendation using LLMs, but no existing approach integrates these elements into a
unified, interpretable, privacy-preserving, and scalable recommendation framework.

In the space of centralized KGC, models such as KBGAT [3] and HAKE [4] have achieved strong
Hits@k performance by leveraging graph embeddings and attention mechanisms. Federated approaches



to KGC are rare but do exist; notably, Fede [5] explores federated training of KGC models across
distributed clients.

To test the potential of fine-tuning LLMs with FL, Ye et al. [6, 7] designed a set of benchmarks,
named OpenFedLLM, to test the capabilities of federated LLMs. They tested several fine-tuning methods
across several models and federated aggregation methods; most notably, they tested Direct Preference
Optimization (DPO), a state-of-the-art human-feedback based fine-tuning method, and found that it
performed well [8].

LLMs have also been tested for their ability to perform KGC tasks. For example, Meyer et al. [9] exper-
imented with using ChatGPT for KGC, though in a limited, non-federated setting. In a complementary
direction, Qiu et al. [10] incorporate knowledge graphs (KGs) to improve LLM-based recommendation,
but without personalization or user-side control of data.

Efforts to mitigate PIEs include the Dual Echo Chamber framework [11], which models both the
user’s comfort zone and alternative spaces using KG embeddings. Anand et al. [12] propose calculating
data point influence to selectively retrain models in order to diversify recommendations.

If you are addressing an existing problem, what are the limitations of current solutions?

Despite their strengths, existing KGC models like KBGAT [3] and HAKE [4] are unsuitable for our
setting due to several key limitations. These models assume centralized training and storage, requiring
access to the global list of entities and relations when the model is built. Not only does this violate
the constraints of federated environments, but it also requires that the models be rebuilt and retrained
whenever new entities or relations are introduced. This is especially problematic in a federated setting
where clients may leave the network and thus take their data with them so that it can no longer be
used in the retraining of the model. Additionally, current models cannot constrain individual KGC
tasks to specific subdomains (e.g., food, media), limiting their usefulness in personalized, on-demand
recommendation scenarios.

While OpenFedLLM [6, 7] does provide a useful framework and set of benchmarks for testing
federated LLMs, it has a significant limitation: it predates Kahneman-Tversky Optimization (KTO) [13]
and does not cover or support it as a result. KTO is a newer human-feedback fine-tuning method, like
DPO, but even more widely applicable and effective, making it even more appropriate for FL, so this is
a significant drawback. There is very limited testing of KTO in FL overall, so there is significant room
for exploring its performance in a federated setting.

While Fede [5] explores KGC in a federated setting, it does so globally and without personalized
structures like PKGs.

Regarding LLM-based solutions, existing work does not integrate federated training or PKGs. Most
rely on static prompting rather than fine-tuning, and do not explore dynamic, user-guided recommen-
dations or PIE mitigation strategies.

Efforts to explore outside PIEs also suffer limitations. TheDual EchoChamber framework [11] requires
case-specific strategies for different PIE types, which is not scalable. Additionally, the retraining-based
method by Anand et al. [12] is computationally expensive and lacks real-time adaptability.

What are you adding that is novel? Why? If not, have research efforts tried or solved similar,
analogous problems?

Our proposed system introduces several novel contributions:

• Federated, PKG-based Recommendation: We integrate federated learning with personalized
KGs, allowing users to retain control over their data while still benefiting from high-quality,
LLM-driven recommendations. Additionally, we employ differential privacy to ensure the user’s
data remains private [14].

• LLM Fine-Tuning with KTO: We leverage KTO to fine-tune the LLM for knowledge graph
tasks, enabling more effective and context-aware recommendations [13]. Among fine-tuning
variants of DPO, KTO is found to produce the best results [15].



• Guideable and Contextual Recommendations: Our system allows users to guide recommen-
dations toward specific domains by instructing the LLM to work within said domains, improving
relevance and interpretability.

• Real-time PIE Mitigation: Unlike existing approaches that require retraining or heuristic strate-
gies, we address PIEs directly by modifying the user’s PKG, enabling quick, targeted adjustments
without retraining the model.

This combination of techniques results in a system that is privacy-preserving, interpretable, scalable,
and user-controllable, qualities that are not achieved in existing work.

What can you learn from these efforts?

These prior efforts underscore the growing interest in privacy, personalization, and interpretability in
recommendation systems. They highlight both the promise and limitations of existing technologies.
Specifically, they show: (i) The potential of LLMs in semantic reasoning tasks involving KGs. (ii) The
practical challenges of deploying centralized models at scale. (iii) The importance of user-guided and
interpretable systems in exploring new content. Together, these works provide valuable benchmarks
and conceptual foundations upon which we can build a more robust and user-centered solution.

4. Research Questions and Hypothesis

What research questions do you plan to explore?

We aim to investigate how LLMs can be integrated into a privacy-preserving, decentralized recommen-
dation system grounded in user-controlled knowledge representations. Specifically, our work explores
the following research questions:
RQ1: How can PKGs be used to fine-tune an LLM to improve recommendation accuracy and personal-
ization compared to standard knowledge-aware recommenders? (Core technical question focusing on
PKG+LLM efficacy)
RQ2: Which fine-tuning strategies are most effective for LLMs in a federated learning setting, particu-
larly in the presence of heterogeneous data and privacy constraints?
RQ3: How does knowledge graph completion via LLM, with PKG data, impact recommendation quality,
such as coverage of long-tail items and novelty?

These questions leverage Semantic Web technologies to structure and store PKGs in interoperable,
machine-readable formats. By grounding user data in open standards (e.g., JSON-LD), stored within Solid
pods, we aim to ensure that users retain full control over their data while still enabling high-performance
model inference on the client side.

What hypotheses do you make in formulating your solution?

H1: PKGs will enable an LLM to generate more accurate recommendations than an LLM without KG
fine-tuning, due to the injection of structured personal knowledge.
H2: LLMs fine-tuned with KTO are more performant and resilient to lopsided data in a federated
setting, even with differential privacy applied, than those fine-tuned via other human feedback-based
fine-tuning methods, such as Direct Preference Optimization (DPO) [8].
H3: If a user’s PKG is adjusted, an LLM fine-tuned for KGC can be led to make recommendations
outside the PIE without retraining more effectively than if the LLM was simply asked to avoid the PIE
with the unadjusted PKG.



5. Preliminary Results

Do you have any preliminary results that inform your research questions or hypotheses?

Figure 1 illustrates our framework design. Figure 1a shows how clients perform local training on
personalized KGs and communicate model updates to a central server for aggregation. Before sending
the updates, differential privacy is applied to ensure the user’s data cannot be reverse engineered
from the updates. Figure 1b shows how, at inference time, the LLM receives a user’s PKG and natural
language query, and generates KG completions. However, if the user indicates they want to avoid the
PIE in the request, the PKG is first adjusted to represent a user with PIE-avoiding preferences.

Table 1 contains our previous work [16] where we showed that an LLM fine-tuned, via FL, with
KTO outperformed DPO, even when the distribution of the data was randomized. We fine-tuned
alpha7B [17] with chatbot arena data [18] in a federated setting using both DPO and KTO, with and
without randomizing the data (KTOR and KTOO respectively). Our findings demonstrate that KTO
consistently outperforms DPO across all aggregation methods and evaluation benchmarks. Notably,
KTO achieves higher scores even when the training data is randomized (KTOR), highlighting its
robustness to data distribution variance. The evaluated benchmarks include:
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Table 1
Benchmark Results: KTOR and KTOO represent models trained with KTO with and without data redistribution,
respectively. MMLU and AdvBench are scored out of 100, others out of 10. Green arrows indicate which
fine-tuning method performed best.

Aggr. Method MT-Bench-1 (/10) Vicuna (/10) AdvBench (/100) MMLU (/100)

Base 7.51 7.51 9.62 25.70
DPO KTOO KTOR DPO KTOO KTOR DPO KTOO KTOR DPO KTOO KTOR

FedAvg 7.84 8.14 ↑ 8.11 8.03 8.51 ↑ 8.40 12.50 15.77 ↑ 12.69 28.56 32.35 ↑ 32.13
FedProx 7.73 8.44 ↑ 8.01 7.73 8.39 ↑ 8.23 13.08 16.15 ↑ 15.58 28.32 32.47 34.34 ↑
SCAFFOLD 8.01 8.17 ↑ 7.83 7.91 8.34 ↑ 8.21 14.23 14.62 17.50 ↑ 30.11 31.71 ↑ 31.29
FedAvgM 7.16 7.54 7.56 ↑ 7.84 7.99 8.37 ↑ 8.65 12.31 14.81 ↑ 27.35 25.55 33.58 ↑
FedYogi 8.75 8.98 9.03 ↑ 7.65 8.21 ↑ 8.13 11.35 12.88 17.12 ↑ 26.75 28.24 ↑ 28.15
FedAdagrad 8.49 8.84 ↑ 8.78 7.96 8.32 8.34 ↑ 11.54 12.88 ↑ 11.92 26.94 27.85 ↑ 27.57
FedAdam 8.20 8.64 ↑ 8.43 7.89 8.55 ↑ 8.47 11.35 12.69 13.46 ↑ 26.48 27.98 ↑ 27.95

Table 2
Model performance on the Movie KG dataset.

Model Precision Recall Hits@1 Hits@3 Hits@10 MRR
PKGLLM (NoSyn) 0.4920 0.2012 0.2342 0.2384 0.2395 0.2364
PKGLLM 0.5486 0.2110 0.2492 0.2506 0.2512 0.2500
FedPKGLLM (NoSyn) 0.4603 0.4088 0.4710 0.4835 0.4838 0.4771
FedPKGLLM 0.3488 0.3924 0.4116 0.4604 0.4641 0.4361
KBGAT 0.0277 0.2288 0.1495 0.1816 0.2288 0.1797
KBGAT-fed 0.0017 0.0165 0.0019 0.0072 0.0165 0.0084
HAKE 0.0084 0.0802 0.0130 0.0324 0.0802 0.0380
HAKE-fed 0.0022 0.0222 0.0000 0.0055 0.0222 0.0087

• MT-Bench-1: Measures one-turn conversational performance [18].
• Vicuna: Assesses instruction-following capabilities [19].
• AdvBench: Evaluates model safety and adversarial robustness [20].
• MMLU: Measures factual knowledge and reasoning ability [21].

The MT-Bench-1, Vicuna, and AdvBench results have been published in our prior work [16], while
the MMLU results are newer and not yet published.

Table 2 reports performance on our custom Movie KG dataset, derived from the Recommendation
Dialogues dataset [22, 23]. We took dialogues between users recommending movies to build PKGs
that encode each user’s preferences. In the table, we refer to our model as PKGLLM (centralized) and
FedPKGLLM (federated) with (noSyn) indicating that no synthetic data was used in fine-tuning.

We evaluated LLMs fine-tuned with KTO against strong symbolic and embedding-based KGC base-
lines: KBGAT and HAKE. Results show that our model, PKGLLM, which is a KTO-tuned Qwen3-0.6B
model [24], achieves significantly better performance in both centralized and federated configurations,
across all metrics: Precision, Recall, Hits@K, and MRR. This suggests that LLMs trained with KTO can
outperform specialized KGC models on link prediction tasks grounded in personalized, dialogue-derived
KGs. These results strongly support H1 and H2, indicating that LLMs fine-tuned via KTO can serve as
effective and robust KGC engines, particularly in decentralized, privacy-sensitive settings.

6. Evaluation

How will you know you’ve answered your question(s)?

Our evaluation strategy centers on systematically testing each hypothesis and research question through
comparative experiments and controlled ablation studies. For RQ1 and RQ2, we rely on benchmark
datasets and model performance metrics as outlined in the preliminary results. These results already
support H1 and part of H2, showing that LLMs fine-tuned via KTO outperform DPO-based models in a



federated setting across a variety of benchmarks, and an LLM fine-tuned to make recommendations
using PKGs outperforms KBGAT and HAKE. For further testing, we will continue to compare against
baseline models.

What are the methods you apply to test your hypotheses?

To evaluate the other half ofH2 (regarding the effect of differential privacy), we will fine-tune Alpaca7B
using both KTO and DPO under varying levels of privacy budgets. We select Alpaca7B to maintain
comparability with the OpenFedLLM [6, 7], and also because more advanced models may actually
decrease in performance from fine-tuning on the chatbot arena dataset since they likely have already
used it in training. Performance will be assessed using similar metrics as in Table 1, allowing for a
direct comparison of robustness under privacy constraints.

To assess H3 and investigate the impact of KG adaptation on recommendations that venture outside
a user’s PIE, we will conduct experiments using three strategies:

1. Recommendations generated with the unmodified PKG.

2. Recommendations generated by prompting the model to avoid the PIE without PKG adaptation.

3. Recommendations generated after adapting the PKG to avoid the PIE.

We will compare the precision, relevance, and diversity of recommendations with each strategy to
determine the efficacy of PKG adaptation as a strategy for PIE avoidance.

Have you identified criteria to measure the degree of success of your solution?

For hypotheses related to differential privacy (H2), we will use the same benchmarks as in the pre-
liminary results: MT-Bench-1, Vicuna, AdvBench, and MMLU. These metrics provide comprehensive
coverage of conversational quality, instruction following, safety, and factual knowledge.

For evaluating PIE avoidance (H3), we will categorize recommendations into three buckets:

• Invalid Recommendation: The recommendation fails to satisfy the user’s explicit query
constraints

• In-PIE Recommendation: The recommendation is valid but reinforces the user’s existing PIE,
offering little novelty.

• Out-PIE Recommendation: The recommendation is valid and successfully steers the user away
from their established PIE.

Consider two illustrative cases: (1) a user seeking a cute animal video but aiming to avoid cat videos,
having been overexposed to them; and (2) a user searching for Italian food recipes while wanting to
avoid tomatoes due to over-personalized exposure. Table 3 presents representative examples of each
recommendation type for these PIE contexts.

Table 3
Examples of recommendations across different Personalized Information Environments (PIEs).

Recommendation Type Cat Video PIE Tomato PIE

Invalid Recommendation Talkshow clip (not an animal video) Butter chicken recipe (not Italian)

In-PIE Recommendation Video of a cat rolling over Classic margherita pizza recipe

Out-PIE Recommendation Video of a koala sleeping Pesto pasta with pine nuts recipe

After running query tests, the number of recommendations in each buckets for different strategies
will allow us to quantify the tradeoff between respecting user’s stated preferences and introducing
novel, out-of-distribution content in recommendations. This would allow us to assess each strategy’s
effectiveness in balancing personalization and recommendation diversity.



7. Reflection and Future Work

Are there any limitations in your approach?

A key limitation of our approach lies in the scalability of large language models in federated learning
environments. While our experiments show that relatively small models like Qwen3-0.6B can still yield
strong performance, larger models could achieve even better results in both reasoning and generalization.
However, using larger models significantly narrows the pool of eligible client devices in FL, as they
demand greater computational resources and memory. This presents a tradeoff between model capacity
and practical deployability across a diverse, decentralized user base.

What are your planned next steps to complete your investigation?

Our immediate next steps are focused on two fronts. First, we will implement and rigorously evaluate
the KG adaptation strategy to test its effectiveness in enabling LLMs to recommend outside a user’s
PIE without compromising relevance. Second, we will conduct a thorough differential privacy anal-
ysis, comparing the performance resilience of KTO and DPO across varying privacy budgets. These
experiments will help validate H2 and H3 and further assess the broader potential of our KGC model
to operate effectively in decentralized, privacy-preserving, and user-adaptive settings.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT, Gemini and Grammarly in order to
rephrase some of the sentences and also to fix grammar and spelling issues. After using these tools
and services, the authors reviewed and edited the content as needed and take full responsibility for the
publication’s content.
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