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Abstract
Ishikawa diagrams, also known as fishbone diagrams, are an established tool in the manufacturing domain for
conducting root cause analysis. The Ishikawa diagram ontology was developed to explicitly model Ishikawa
diagrams as visual artifacts, their encoded knowledge and the process of their creation. While formalization is an
important step for making encoded knowledge accessible, another challenge is to establish reasoning mechanisms
to provide decision-support to users. In this paper, we present a reasoning pipeline which resulted from a case
study concerning fabric fault detection. The reasoning pipeline is intended to be used in conjunction with the
Ishikawa diagram ontology.
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1. Introduction

Ishikawa diagrams, also known as fishbone diagrams, are established tools in the manufacturing domain
for conducting a root cause analysis (RCA) with little to no training [1, 2, 3, 4, 5]. Typically, an Ishikawa
diagram is constructed collaboratively through an RCA workshop, after which the results are logged in
some digital system. However, the actual diagrams are often discarded after the workshop, as there is
no standard formalization method, leading to the loss of the encoded domain knowledge. The Ishikawa
diagram ontology [6] aims to close this gap by providing rich semantics to formalize Ishikawa diagrams.
While the application of the Ishikawa diagram ontology makes encoded knowledge accessible, this
paper goes one step further and addresses how to reason the knowledge it contains. In doing so, we
report on a use case from the textile industry in which Ishikawa diagrams were generated automatically
from individual and shared knowledge bases, and were made actionable by applying a knowledge-based
system to provide decision support for identifying and fixing fabric faults.

2. Case Study: Fabric Fault Detection

In the domain of industrial knitting (a subdomain of the textile industry), the vast amount of different
yarn qualities, designs, and knitting machine characteristics paired with small lot sizes leads to the
problem that training documents are incomplete and knitters (who operate circular knitting machines)
must develop heuristics to quickly identify and fix fabric faults. In addition, knitters are exposed to
different problems due to assigned production orders. As a consequence, knitters are not equally trained
on the same fabric fault and novice knitters struggle to acquire knowledge missing in the training
material.
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Broken inlay
yarn

Broken
needle

Dropped
stitch Press-off Tension

stripes

Table 1
Overview of the faults with each accompanied by a real image of a fault sample and a manually labeled image
where white indicates the faulty area. Broken inlay yarn refers to a fault in knitting where the yarn used for
inlay (a decorative or structural addition) breaks, leading to gaps, loose ends, or weakened areas in the fabric. A
broken needle is a needle that is damaged or broken, causing faults like holes, ladders, or broken stitches in
the fabric. A dropped stitch is a stitch that unintentionally slips off the needle, creating a hole or ladder in the
fabric. Press-off (front-side) refers to a fault where the needles on the front bed of a circular knitting machine
stop functioning properly, causing disruptions or flaws in the fabric’s design. Tension stripes in knitting appear
as visible lines or bands due to uneven yarn tension.

Consequently, there is a need to automatically support knitters in the context of fabric fault detection.
Researchers have proposed various applications of artificial intelligence to address specific problems,
e.g., the automatic visual detection of faults [7, p. 172]. However, the effectiveness of the automated
visual inspection is challenged by the consequences of mass customization and novel design choices.
For instance, a design with intentionally irregular 3D patterns might visually resemble a fabric fault of
a flat-knitted design.

Due to the unreliability of computer vision applications, our collaboration partner relies on regular
quality workshops in which the 5-Why method is applied to stimulate knowledge exchange among
knitters. However, a number of issues were observed that limit the effectiveness of the workshops. First,
knitters tend to list only direct causes instead of longer cause-effect chains. Second, the knowledge
exchange is limited to knitters that actually attend the same workshop, which excludes the knowledge
of knitters from other shifts.

In agreement with the textile manufacturer, we developed a reasoning pipeline to provide automatic
decision support for five fabric faults in the scope of an exploratory case study. The case study consisted
of four steps: (1) Acquisition of the ground truths, (2) building a knowledge graph, (3) Implementation of
the reasoning pipeline, and (4) Evaluation of the implementation. The fabric faults under investigation
can be easily distinguished by an experienced knitter during visual inspection. Samples of the fabric
faults are shown in Table 1.

2.1. Acquisition of the Ground Truths

We have interviewed two knitting experts to elicit relevant knowledge on how to identify, analyze, and
resolve the occurrence of the five named faults while operating on the knitting machine. As the mode
of communication (which includes the expression of technical terminology) was in Turkish for both
interviewees, a translator mediated the interviews by translating between English and Turkish. Each
interview lasted an hour, which led to a total English audio track of 50 minutes and a Turkish audio
track of 70 minutes. In each interview, the experts had to identify and visually describe the fabric fault,



describe its root causes, and what actions must be taken to resolve the fault. For the visual inspection,
we provided a fabric sample for each fault. Based on the interviews, we have formalized a set of 31
relationships which we consider the ground truths and from which we can directly generate different
Ishikawa diagrams.

2.2. Building a Knowledge Graph

As the Ishikawa diagram is “a guide to concrete action”[3, p. 29], we must add weights to the cause-
effect relationships to prioritize causes to define the order of necessary actions. The prioritization
process follows a behavioral aggregation approach where the priority order might be influenced by the
participating group of knitters. As knitters must complete their daily orders, it cannot be ensured that
all knitters have the capacity to attend the focused discussion. Also, the elicitation and prioritization
process might become less effective if too many knitters at once participate which increases the effort
to coordinate the session.

In order to collect individual weights of the cause-effect relationships, we have recruited eight
experienced knitters who provided their perceived frequency of occurrence for each relationship as a
numerical value and as a verbal probability expression (VPE) [8] via a web survey. The web survey took
a knitter on average 90 minutes to complete and was presented in Turkish language, translated from an
original English version. A knitting expert who was fluent in both languages was present to clarify task
descriptions or ambiguous terms. The perceived frequency (here interpreted as probability) is linked
as annotation to each relationship and serves as weight. We have decided to use only the probability
as weight for this demonstration case, because it can be directly elicited from knitters without prior
training, in contrast to characteristics like impact or severity.

As a result, we have captured eight individual knowledge bases which address subsets of the known
knowledge space (here: 31 relationships and their entities) and which form a semi-connected knowledge
graph.

Figure 1: Some faults cannot be resolved by the knitters themselves, but they must call for the tuner who
has additional rights on the knitting machine. The depicted Ishikawa diagram shows the relevant cause-effect
relationships which can be used for training purposes. The diagram’s content is formalized to FO(·) to enable
decision-support using the IDP-Z3 system. While the shown example is kept simple for clarity, the real advantage
of the decision support starts with large and interdependent knowledge bases.



2.3. Implementation of the Reasoning Pipeline

Ishikawa diagrams can be formalized and generated from any individual knowledge base or a set of
knowledge bases using the Ishikawa diagram ontology as basis. As the next step, we aimed for an
interactive and complete overview for knitters to explore known cause-effect relationships as the desired
decision support. To infer the relevant causes for a fabric fault, we applied the IDP-Z3 system [9] to
reason on the formalized knowledge as it supports several out-of-the-box inference tasks and has a
dynamic web user interface which makes it a great tool for rapid prototyping. Additionally, the IDP-Z3
system was already successfully applied in comparable manufacturing-related use cases [10, 11, 12].
Supported inference tasks are model expansion, model propagation, and model optimization. The
dynamic web user interface is called Interactive Consultant [13] where irrelevant knowledge (for the
selected inference task) is automatically grayed out and the reasoning chains are documented for
explainability. The pipeline to dynamically generate the interactive decision support is illustrated with
example in Figure 1.

Two limitations of the described implementation must be pointed out. First, the IDP-Z3 system
cannot directly reason on RDF data, but requires the data in FO(·) syntax which prevents the described
implementation to be used on a larger scale. Nonetheless, there already exists on-going work to make
RDF data interoperable with FO(·) [14]. Second, the cause-effect relationships in the Ishikawa diagrams
are filtered by assigned probability threshold before translated to FO(·) as the IDP-Z3 system cannot
handle uncertain knowledge. An interesting alternative might be to use CP-Logic [15] and ProbLog [16].

2.4. Evaluation of the Implementation

Due to the case study’s small scope, the captured knowledge space was insufficient to meaningfully
support knitters in production. Instead, we conducted a SWOT analysis with two knitting experts for
the evaluation. One identified strength was that Ishikawa diagrams can be understood by people with
different roles and technical backgrounds, which helps the communication between these different
parties. Additionally, the approach can be used to detect knowledge gaps of knitters, for which
appropriate training material could then be provided. The provision of an expert knowledge base as
decision support might also shorten the training time of novice knitters by manifesting the expert’s
mental model. Weaknesses were that knitters require initial training and the help of a moderator before
they can correctly apply the new approach. Also, it may not always be possible to arrive at detailed,
formalized knowledge for each use case. The main threat for the approach is that new fabric designs and
qualities might lead to irregular behavior contradicting the existing knowledge base. In summary, the
experts see the greatest benefit in the approach to shorten the training time of knitters by visualizing
the mental model of experts for novice knitters to adopt.

3. Conclusion

We described an exploratory case study with an implemented reasoning pipeline that is intended
to be used in conjunction with the Ishikawa diagram ontology to illustrate how Ishikawa diagrams
can be made actionable to provide decision support to knitters (or any other users). Additionally, we
highlighted current limitations and challenges of such a reasoning pipeline that must be addressed by
new tools to harness the full potential of the Ishikawa diagram ontology.
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