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Abstract

Knowledge graphs (KGs) are powerful tools for representing and reasoning over structured information. Entity
matching between KGs helps integrate multiple KGs. However, the performance of entity matching tools can be
sensitive to parameter settings, such as thresholds. Large language models (LLMs) have emerged as powerful tools
for solving reasoning problems and show potential for improving entity alignment. Our approach incorporates
two LLM-based steps: filtering and expansion. In the filtering step, an LLM is used to validate entity mappings.
The expansion step then uses an LLM to select the correct mapping from a candidate list for any source entity
that lacks a corresponding pair after the filtering step. Experiments on the OAEI KG track dataset and matchings
with DBpedia datasets show that using an LLM as a filter achieves a low false-negative rate and a favorable
false-positive rate, indicating that it can improve precision without significantly lowering recall. However, the
expansion step has low precision because the LLM tries to select a corresponding entity even when no correct
match exists in the candidate list.
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1. Introduction

Entity matching (EM), the task of identifying equivalent entities across Knowledge Graphs (KGs), is
crucial for knowledge integration. Recent Large Language Model (LLM) based methods are often evalu-
ated in unrealistic settings, using hit-rate metrics that neglect precision/recall trade-offs [1, 2]. While
traditional statistical methods are competitive [3], they rely on manually tuned similarity thresholds,
limiting their robustness.

To address these limitations, we propose a novel two-stage method using an LLM as both a qualitative
filter and a correspondence expander. First, we replace the rigid statistical threshold of a baseline
matcher by prompting an LLM to verify candidate pairs, creating a high-confidence alignment. Second,
for remaining unmatched entities, the LLM selects the correct correspondence from a retrieved candidate
list, expanding alignment coverage.

Our evaluation on OAEI [4] and Gollum [5] datasets shows that filtering effectively prunes incorrect
candidates with minimal impact on recall, while expansion consistently achieves the highest F-measure
against established baselines. These results demonstrate improved precision and recall. However, we
note that LLMs tend to force a selection even when no correct match exists, highlighting a key area for
future work.

2. Related Works

Existing ontology matching systems employ diverse strategies. For instance, PARIS [6] is a probabilistic
matcher that computes equivalence probabilities for predicates and entities by leveraging the concept of
functionality and comparing attribute values. LogMap [7], in contrast, uses an anchor-based approach
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that combines lexical indexing with an ontology reasoner to achieve high-precision mappings, though its
effectiveness depends on a well-structured class ontology. Another approach, the Full Triple Matcher(8],
first maps entities and predicates based on their labels, then uses these mappings to find compatible
triples, which are subsequently used to refine the initial entity mappings.

3. Approach

Our approach refines entity alignments produced by an existing matcher, specifically leveraging the
output of the Full Triple Matcher. The Full Triple Matcher takes two distinct KGs, G; and G, as input
and outputs a set of aligned entities, M., and triples, M;. We introduce a two-step post-processing
pipeline to enhance these initial alignments: Filtering and Expansion.

3.1. Filtering

This step filters the initial set of candidate entity alignments, M., to identify pairs corresponding to
the same real-world entity. For each source entity es; within a pair in M., we first identify a set of
top candidate target entities, denoted as £¢?"44a% based on the similarity score generated from FTM.
Subsequently, each candidate pair, consisting of e, and a target entity egendidate ¢ peandidate g na5ced
to an LLM for verification. To provide context, this input is augmented with the Top-10 most similar
triples associated with both e; and ef‘mdidat‘" selected based on the scores in M;. If the LLM confirms
that the entities in the pair refer to the same real-world entity, the pair is added to a new filtered set,

M7I1ering  Otherwise, the pair is discarded.

3.2. Expansion

This step expands the matching set by recovering correct entity pairs that were erroneously removed
during the filtering phase. First, we identify a set of source entities, e7®""°"?, that exist in the initial set
of pairs, M., but lack a corresponding match in the filtered set, M¢ itering For each removed entity
eremoved e retrieve the top-10 most similar candidate entities, E£§"%49%  from the target knowledge
graph, based on the score obtained from FTM. These candidates are then passed to an LLM, which is
prompted to perform a multiple-choice selection to identify the single best match that represents the
same real-world object. The resulting pair (e7™"°d ¢,) is then added to MJ """ to form the final

matching

expanded matching set, M,

4. Result

We compared our methods, Filter and Expansion, against several baselines: BaselineAltLabel, LogMap
[7], PARIS [6], and the Full Triple Matcher (FTM) [8]. Our methods extend FTM by adding a filtering
step (Filter) or both filtering and expansion (Expansion). We tuned baselines for optimal F-measure
using a threshold, a step omitted by our "(w/o threshold)" variants. We used the Gemma 3 [9] with 27
billion parameters as the LLM model. We selected this model because it can be run locally with a single
GPU, making it easier to replicate and use. The codes and results are available in the GitHub '.

On the OAEI 2023 KG track using DBkWik datasets [10], our Expansion (w/o threshold) method
achieved the highest recall on four datasets, surpassing LogMap which was highest on three in terms of
precision. Furthermore, our standard Expansion method achieved the top F-measure on three datasets
(Table 1).

On the large-scale Gollum dataset [5] (MAL/SWW-DBpedia), our Filter method achieved the highest
precision, while our Expansion method yielded the best F-measure across both tasks (Table 2). In
contrast, LogMap failed to load the data, and PARIS did not terminate on SWW-DBpedia.

'https://github.com/eitiyamamoto/llm-kg-matcher.git
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Table 1
Result for entity matching dataset (OAEI)

dataset matcher Precision | Recall F-measure | Threshold
BaselineAltLabel 0.92 0.62 0.74 0.0
LogMap 0.94 0.69 0.80 0.0
PARIS 0.64 0.67 0.66 0.98
FTM 0.81 0.77 0.79 0.87
SWW-SWG Filter (w/o threshold) 0.72 0.75 0.74 -
Filter 0.83 0.73 0.78 0.84
Expansion (w/o threshold) 0.68 0.81 0.74 -
Expansion 0.83 0.77 0.80 0.84
BaselineAltLabel 0.92 0.90 0.91 0.0
LogMap 0.94 0.78 0.86 0.0
PARIS 0.56 0.93 0.70 0.99
FTM 0.85 0.90 0.87 0.90
SWW-TOR Filter (w/o threshold) 0.61 0.91 0.73 -
Filter 0.87 0.87 0.87 0.90
Expansion (w/o threshold) 0.61 0.95 0.74 -
Expansion 0.87 0.89 0.88 0.90
BaselineAltLabel 0.86 0.68 0.76 0.0
LogMap 0.84 0.46 0.60 0.00
PARIS 0.87 0.83 0.85 0.60
FTM 0.81 0.68 0.74 0.90
MCU-MDB
Filter (w/o threshold) 0.74 0.68 0.71 -
Filter 0.82 0.65 0.73 0.72
Expansion (w/o threshold) 0.61 0.70 0.66 -
Expansion 0.82 0.66 0.73 0.90
BaselineAltLabel 0.88 0.89 0.89 0.0
LogMap 0.89 0.76 0.82 0.0
PARIS 0.84 0.92 0.88 0.99
FTM 0.89 0.89 0.89 0.94
MAL-MBT -
Filter (w/o threshold) 0.83 0.89 0.86 -
Filter 0.92 0.86 0.89 0.90
Expansion (w/o threshold) 0.82 0.93 0.87 -
Expansion 0.92 0.89 0.90 0.90
BaselineAltLabel 0.88 0.93 0.90 0.0
LogMap 0.88 0.77 0.82 0.91
PARIS 0.67 0.93 0.78 0.99
FTM 0.84 0.92 0.88 0.90
MAL-STX -
Filter (w/o threshold) 0.63 0.93 0.75 -
Filter 0.87 0.91 0.89 0.89
Expansion (w/o threshold) 0.63 0.94 0.75 -
Expansion 0.87 0.92 0.90 0.90

On the MCU-MDB dataset, we analyzed our method’s performance using confusion matrices (Table
3). The filtering step achieves a low false-negative rate, correctly pruning non-matches while passing
most correct pairs to the next step (Table 3a). The expansion step, which relies on a top-10 candidate list
for the LLM, achieves a precision of 0.13. In the table 3b, we have a confusion matrix with correct@n to
indicate if the correct answer is present in the n-th position. The LLM correctly identifies the entity in
49% of cases when it is in the top-10. This accuracy rises to 60% if the correct entity is ranked first, but
drops to 32% for lower-ranked (2-10) entities.

Figure 1 illustrates the comparison between the set of results obtained from the FTM method and
the four new methods, "Filtered" and "Expansion", with and without a selection threshold. The Venn
diagrams demonstrate a substantial overlap in all four scenarios, indicating a strong agreement between
the FTM method and the alternative approaches. Specifically, the application of a threshold to the
"Filtered" and "Expansion” methods significantly reduces their number of unique results, making them
almost entirely subsets of the FTM results. This high degree of similarity is quantitatively confirmed by
the Jaccard coefficient, which was calculated for each comparison and found to vary from 0.91 to 0.98,



Table 2
Result for entity matching dataset (Gollum)

dataset matcher Precision | Recall F-measure | Threshold
BaselineAltLabel 0.53 0.69 0.60 0.0
LogMap - - - -
PARIS 0.50 0.53 0.51 0.95
MAL- FTM 0.39 0.73 0.50 0.90
DBpedia Filter (w/o threshold) 0.74 0.66 0.70 -
Filter 0.74 0.66 0.70 0.0
Expansion (w/o threshold) 0.73 0.72 0.72 -
Expansion 0.74 0.72 0.73 -
BaselineAltLabel 0.48 0.78 0.59 0.0
LogMap - - - -
PARIS - - - -
SWW- FTM 0.72 0.71 0.71 0.94
DBpedia Filter (w/o threshold) 0.54 0.71 0.62 -
Filter 0.91 0.71 0.79 0.90
Expansion (w/o threshold) 0.54 0.71 0.62 -
Expansion 0.91 0.71 0.79 0.90
Table 3
Confusion matrix from MCU-MDB dataset
Correct
Total
Correct@10 | Correct@1 | TRUE | FALSE
Generated answer TRUE 26 A7
Correct Not Tested TRUE FALSE Total TRUE 34 2
TRUE 16 1,120 57 1,193
FALSE 12 25
FALSE 393 1,854 2,247 FALSE Sod
Total 16 1,513 1,911 3,440 FALSE 294
(a) Filtering Grand Total 46 341

(b) Expansion

signifying a very strong correlation between the result sets.

5. Discussion

The FTM with filter and expansion outperformed the baselines because the filter improves precision
while the expansion considers non-top-1 candidates to improve recall. However, Table 3b reveals that
the expansion step’s performance is unexpectedly low. This is because the LLM often fails to select
the correct pair from the candidate list and forces a choice even when the correct match is absent.
Consequently, the method’s effectiveness still relies heavily on a well-tuned similarity threshold to
filter out incorrect pairs.

The filter step alone, however, presents a viable alternative to a threshold. As shown in Tables 1 and
2, it achieves comparable F-measure on most datasets, making it advantageous when a labeled dataset
for tuning a threshold is unavailable. According to Table 3a, the filter produces few false negatives, thus
preserving recall. Its primary limitation is a high false-positive rate, which restricts precision gains. In
summary, the filter is highly reliable when rejecting a pair (predicting ’false’) but less reliable when
accepting one (predicting ’true’).

6. Conclusion

In this work, we proposed a two-step (filter and expansion) extension to a statistical method using an
LLM. Our approach achieved the best results in most cases when combining both steps with threshold
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Figure 1: Comparison of the FTM, "Filtered" (top) and "Expansion" (bottom) methods for MCU-MDB dataset

filtering. We also found that the filter step alone yields comparable results, suggesting it can replace
threshold filtering when an optimal threshold is unknown. However, the filter step maintains high
recall at the cost of lower precision. On the other hand, the expansion step helps find pairs beyond
the top-1 candidate, but its tendency to always select a pair—even when none is correct—results in
low precision. As future work, we will refine these steps to learn from the selected pairs, test how the
choice of LLM impacts performance and how to reduce the use of LLM to reduce computation effort,
such as finding corner cases and entity pairs with close similarities.
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