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Abstract
Synthetic tabular data is vital for augmentation, privacy, and performance under limited data, yetmost work targets
marginal statistics, neglecting downstream utility and explainability in scarce-data scenarios. We propose KGSynX,
which builds a knowledge graph from table records and derives graph embeddings to inform LLM prompts. A
SHAP‑guided feedback loop measures attribution differences between real and generated data and injects targeted
corrections into subsequent prompts. Evaluated under the Train-on-Synthetic, Test-on-Real (TSTR) protocol on
heart disease, enterprise invoice, and telco churn datasets, KGSynX consistently outperforms baseline in accuracy,
F1, and AUC while closing the SHAP attribution gap. By explicitly modeling structure and semantics, KGSynX
produces more reliable synthetic datasets for downstream tasks.
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1. Introduction

Synthetic tabular data generation has emerged as a critical technique in scenarios where access to
real datasets is limited by privacy, regulatory, or logistical constraints—for example, in healthcare [16],
finance, and telecommunications [4, 9]. By creating high‑quality synthetic records, practitioners can
augment scarce data, share information without exposing sensitive details [18], and improve model
training under low‑resource conditions. However, most state‑of‑the‑art approaches—ranging from gen-
erative adversarial networks (GANs) [1, 12, 13] and diffusion models [14, 15, 6] to Large Language Model
(LLM) based generators [8] primarily focus on matching marginal feature distributions or low‑order
statistics. While these methods can reproduce individual column histograms or pairwise correlations,
they often fail to capture higher‑order semantic relationships present in the joint distribution. As a result,
synthetic samples may exhibit unrealistic combinations of features, leading to degraded performance
in downstream tasks and undermining user trust [5]. And these techniques still rely on handcrafted
objectives or black‑box signals, making it difficult to trace how structural or semantic errors persist in
the synthetic data.
To address these challenges, we present KGSynX, which integrates knowledge graphs (KG) [10]

and explainable AI feedback to steer LLM‑based synthesis. Our key contributions are: First, KGSynX
constructs a knowledge graph in which each record is represented as an entity node and each feature-
value pair as an attribute node; edges encode the semantic dependencies inherent in the original
table. We then extract structure‑aware embeddings via Node2Vec [3] and incorporate them into LLM
prompts, ensuring that sample generation respects the encoded graph topology. Next, we implement
a SHAP‑driven refinement loop [2]: after each generation round, we compute the attribution gap
between real and synthetic data, identify the top‑k discrepant features, and automatically inject targeted
instructions into the prompt to correct those errors. This explainable feedbackmechanism both improves
downstream utility [19] and provides clear diagnostics for auditing.
We validate KGSynX under the Train‑on‑Synthetic, Test‑on‑Real (TSTR) protocol [11] on three

benchmark datasets. Compared to baselines, our method achieves substantial gains in accuracy, F1
score, andAUC [20], while progressively narrowing the SHAP attribution gap. These results demonstrate
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that explicitly modeling semantic structure and leveraging interpretable feedback are key to producing
reliable synthetic data for practical applications.

2. Method Overview

2.1. Framework

Figure 1: KGSynX Framework: (Step 1) KG Construction, (Step 2) Embedding & Initial Synthesis,
(Step 3) SHAP Analysis and Prompt Feedback Loop, (Step 4) Final Optimized Synthetic Data
Generation.

Figure 1 presents KGSynX as a four-step pipeline. (Step 1) KG Construction: we lift raw tables into a
knowledge graph where each row becomes an entity node and each attribute-value is linked via typed
relations, exposing domain rules and constraints. (Step 2) Embedding & Initial Synthesis: we compute
Node2Vec embeddings over the KG and inject these structure-aware vectors into prompts for ChatGPT-
4o [7] to generate an initial batch of synthetic records. (Step 3) SHAP Analysis & Prompt Feedback Loop:
we train classifiers on real and synthetic data and use SHAP [17] to measure feature-importance gaps;
these gaps are automatically translated into targeted prompt edits, and Steps 2–3 are repeated until
misalignment falls below a preset threshold. (Step 4) Final Optimized Synthetic Data Generation: with
the refined prompts, we produce the final synthetic dataset that best matches the real data in both
statistics and decision-logic semantics. This modular design keeps knowledge extraction, generation,
feedback, and refinement decoupled while preserving end-to-end semantic guidance.

2.2. Core Components

Knowledge Graph Construction. We construct a knowgraph graph 𝐺 = (𝑉 , 𝐸) where

𝑉 = 𝑉entity ∪ 𝑉attribute, 𝐸 = {(𝑒, 𝑎) ∣ record 𝑒 has attribute 𝑎}.

Here, 𝑉entity represents the set of sample entity nodes and 𝑉attribute represents the set of feature-value
nodes. The edge set 𝐸 captures associations between entities and their attributes, thus encoding the
structural dependencies inherent in the original tabular data.

SHAP Attribution Gap. We quantify semantic alignment by computing

𝐷SHAP_cos = 1 −
𝜙real ⋅ 𝜙syn
‖𝜙real‖ ‖𝜙syn‖

,

where 𝜙real and 𝜙syn are the normalized SHAP attribution vectors for the real and synthetic datasets.
The cosine distance 𝐷SHAP_cos measures the angular dissimilarity between these vectors, with values
closer to 0 indicating that the synthetic data’s attribution pattern closely aligns with that of the real
data.



Prompt Refinement. Given an initial prompt 𝒫𝑡, we iteratively refine it by updating based on the
top-𝑘 attribution discrepancies Δ𝜙𝑘:

𝒫𝑡+1 = 𝒫𝑡 ⊕ {emphasize features in Δ𝜙𝑘}.

The operator ⊕ denotes the appending of targeted instructions to the existing prompt. Through
this SHAP-guided feedback loop, the LLM is steered to generate samples whose feature importance
distributions progressively converge to those of the real dataset.

2.3. Prompt Example

Prompt Examples

Initial Prompt:

"Using the knowledge graph context, generate synthetic records ensuring the
following attribute dependencies: [KG summary]."

After SHAP Feedback:

"Prioritize matching the distribution of {Feature_A} and reduce
overrepresentation of {Feature_B}."

The first prompt instructs the LLM to adhere to the structural relationships embedded within the
knowledge graph during the generation of new records. The second prompt encourages the model to
refine its output by prioritizing features exhibiting the most significant attribution discrepancies.

2.4. Semantic Alignment Convergence

Figure 2: SHAP attribution gap 𝐷SHAP over iterative feedback cycles

As shown in Figure 2, at each iteration we measure the SHAP divergence between real and synthetic
models and update the prompts accordingly. This loop terminates when the semantic-alignment gap
falls below 𝜀 (default 0.1) or the maximum number of rounds 𝑇 is reached (default 5). In practice,
convergence is typically achieved within 3–4 rounds.

3. Experiments & Results

3.1. Datasets and Classifiers

We used the three benchmark datasets in our experiments. The UCI Heart Disease dataset contains
303 samples with 13 clinical features, and is evaluated using a RandomForest classifier to capture
non‐linear interactions. The Enterprise Invoice Usage dataset comprises 500 enterprise transaction



records with 11 attributes, for which we employ XGBoost due to its robustness on structured financial
data. Finally, the Telco Churn dataset (7,043 samples, 20 features) is tested with LightGBM to leverage
its high efficiency and accuracy in large‐scale customer churn prediction. All classifiers are trained
with default hyperparameter settings and 5‐fold cross‐validation to ensure a fair comparison.

3.2. Performance Comparison

Our KGSynX consistently outperforms CTGAN and vanilla LLM generators, achieving the best F1
and Area Under the Curve (AUC) scores across the board (Table 1). In the Heart Disease dataset,
KGSynX boosts Accuracy from 0.667 (CTGAN) to 0.767 and improves F1 from 0.474 to 0.750. On the
Enterprise dataset, it reaches the highest accuracy (0.900) and F1 (0.904), demonstrating its ability to
model complex enterprise data. For Telco Churn, KGSynX attains the top AUC (0.853) and a balanced
F1 (0.611), confirming its robustness in large‐scale customer prediction tasks. These results validate
that integrating knowledge‐graph embeddings with SHAP‐driven prompt refinement yields synthetic
data with downstream utility and semantic fidelity.

Table 1
Performance comparison across three datasets

Method Heart Disease1 Enterprise Invoice2 Telco Churn3

Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC

Real 0.867 0.826 0.929 0.867 0.826 0.929 0.833 0.713 0.867
MedGAN 0.664 0.384 0.527 0.725 0.724 0.818 0.730 0.515 0.294
CTGAN 0.667 0.474 0.746 0.655 0.670 0.628 0.726 0.332 0.557
TabDDPM 0.541 0.380 0.498 0.425 0.357 0.544 0.721 0.603 0.772
LLM 0.350 0.361 0.278 0.765 0.766 0.838 0.626 0.584 0.810
LLM+KG 0.600 0.625 0.741 0.865 0.868 0.943 0.760 0.326 0.824
Ours 0.767 0.750 0.827 0.900 0.904 0.942 0.776 0.611 0.853

4. Conclusion & Future Work

In this work, we introduced KGSynX, a framework that seamlessly integrates knowledge‑graph embed-
dings with SHAP‑driven feedback to guide large language models in generating synthetic tabular data.
Our method explicitly models the structural dependencies of tabular data and iteratively refines genera-
tion prompts based on feature attribution discrepancies. Our experiments, conducted under the TSTR
protocol on UCI Heart Disease, Enterprise Invoice Usage, and Telco Churn datasets, demonstrate that
KGSynX outperforms GAN-base models, TabDDPM, LLM‑only, and LLM+KG baselines in classification
accuracy, F1 score, and AUC, while preserving semantic fidelity and interpretability.

Despite these encouraging results, the current implementation relies on heuristic prompt adjustments,
which may require manual tuning and domain expertise. Additionally, SHAP‑based attribution com-
putations introduce substantial computational overhead, limiting scalability in resource‑constrained
environments. Future work will focus on developing reinforcement‑learning‑based or differentiable
optimization techniques for automated prompt refinement to reduce reliance on heuristics. We also plan
to explore efficient SHAP approximation methods and extend our approach to multi‑label, multi‑modal
knowledge graphs and streaming data scenarios to enhance applicability.

1https://archive.ics.uci.edu/dataset/45/heart+disease
2provided by Infomart Corporation
3https://www.kaggle.com/datasets/blastchar/telco-customer-churn



Supplemental Material Statement

The source code, real and synthetic datasets, and reproducible pipeline for KGSynX are available online
via

• GitHub
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