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Abstract
In cybersecurity, the threat landscape is composed of complex relations among security data and constantly
evolves. To address this challenge, this paper presents a framework for constructing and reasoning over cyber-
security knowledge graphs (KGs) derived from vulnerability reports. Our approach analyzes textual content
and structured data sources. To enhance causal reasoning, we explicitly model key causal factors as structured
entities and relationships. The resulting KG is further enriched through augmentation using DBpedia, integrating
external knowledge to enhance connectivity and context. We evaluate the impact of this augmentation through a
comparison, contrasting the content of the original and the augmented graphs. Experimental results demonstrate
that the Graph-LLM approach, with augmentation, enhances link prediction and produces higher-quality Ques-
tion Answering (QA) compared to using report descriptions alone. We demonstrate a hybrid reasoning setup
integrating LLM-based language understanding with graph inference to answer cybersecurity queries.
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1. Introduction

Cybersecurity is a specialized domain where analysts must interpret vast, evolving data to detect threats,
understand vulnerabilities, and respond appropriately [1]. Knowledge graphs (KGs) have emerged
as an effective tool for modeling this structured information, providing a semantic foundation for
threat analysis, attack attribution, and decision-making [2]. Despite their advantages, constructing and
maintaining cybersecurity knowledge graphs is resource-intensive, and automated methods are still in
development [3]. Large language models (LLMs) excel at natural language understanding and entity
extraction but struggle with precise symbolic reasoning and complex graph operations like multi-hop
inference and causal chaining [4]. In contrast, graph-based reasoning is highly effective at traversing
causal and semantic relationships, which are critical for cybersecurity tasks such as attack path analysis
and threat correlation [5]. The combination of LLMs’ natural language understanding with structured
graph reasoning can offer a powerful hybrid solution, leveraging the strengths of both paradigms [6].

1.1. Our Approach

To address the challenges outlined above, we propose a hybrid framework that combines strong language
understanding of LLMs with the semantic expressiveness of knowledge graphs for cybersecurity threat
understanding. To this end, the KG is first constructed by analyzing structured and unstructured
data to discover associations in vulnerability reports CPE [7], CVE [8], and CWE [9], where CPE
identifies affected products and versions, CVE denotes specific vulnerabilities in software and hardware,
and CWE classifies the underlying weakness types. We also introduce a causal modeling schema
that explicitly represents causal elements, enhancing the ability of the graph to support cause-effect
reasoning. To improve coverage and semantic extension, we augment the KG using DBpedia [10],
enriching it with background knowledge (DBpedia resources) and semantic relations (ontological terms).
This augmentation improves connectivity and enables higher-quality inference. Experiments show the
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augmented Graph-LLM improves link prediction and Question Answering (QA) quality over report
descriptions alone. Finally, we present a hybrid pipeline that integrates LLM outputs with KG inference
to answer cybersecurity queries, thereby enhancing reasoning through knowledge graph retrieval.

2. Methodology

Figure 1: Pipelines that encompass the KG creation and exploitation. 1) Textmining extracts valuable information
from text descriptions. 3) KG creation transforms the results of text mining and available structured data into a
KG, represented as an RDF graph. 3) KG exploitation enables LLM-graph reasoning in response to user queries.

The methodology depicted in Fig. 1 comprises several steps grouped into pipelines: 1) text mining
extracts content from the text descriptions, 2) KG creation builds the KG combining structured data and
content from the text mining, and 3) KG exploitation performs reasoning on the KG created. For LLM
processing, we used LLaMA 3.3 70B instruct model [11].

1. Text mining.

a) In pre-processing, vulnerability reports are retrieved, parsed, and cleaned.

b) Rule patterns and the syntactic tree. This process is used to identify concepts and relation-
ships. It is performed as a fallback option of LLM entity extraction.

c) Co-reference resolution is computed to extract the reference for the same entity in the text.

d) Entity extraction. This process is handled by the LLM, which identifies causal factors:
entities, relationships, states, actors, objects, and properties.

e) Acronym resolution is performed using specialized dictionaries and LLM knowledge.

2. The KG construction.

f) The KG construction organizes the data collected through text mining into a raw graph (i.e.,
a graph without Resource Description Framework (RDF) notation [12]).

g) The KG reshaping converts the raw graph into an RDF graph [13], which is a foundational
data model for representing knowledge as triples. The KG is based on a schema (ontology).

h) The graph is augmented using concepts and relations from DBpedia. The LLM selects the
most appropriate concept during expansion to create coherent graph excerpts.

i) The graph created is stored in a Virtuoso open-source triple store [14].



3. KG exploitation.

j) In the KG retrieval step. SPARQL queries [15] retrieve content from the KG stored in the
triple store based on the user request using multi-hop expansion.

k) The graphs retrieved are encoded into text for the LLM’s processing.

l) The LLM hybrid reasoning combines graph data and the user query to perform reasoning. .

3. Experimental results

3.1. Knowledge Graph Creation and Augmentation

An example of knowledge graph creation and augmentation is presented. A graph excerpt derived from
structured information and its augmentation is presented in Fig. 2. The main elements of the graph
created are highlighted.

Figure 2: Final KG excerpt for the CWE report presents content from 1) structured data, 2) causal factors
(actor, action, object, properties, states) from entity extraction, 3) background knowledge from DBpedia (similar
products and industries), and 4) cybersecurity terminology and semantic relations.

3.2. LLM-Graph Reasoning and Exploitation.

A response generated by LLM–graph reasoning is shown in Table 1. In this hybrid approach, the LLM
analyzes the user query alongside the graph content retrieved based on terms from the question. The
first row presents the result of the LLM reasoning using only plain text (i.e., the report description). In
contrast, the graph-LLM response includes versions connected to this report.

Additionally, the visualization of the KG exploitation is depicted in Fig.3. Once the query is entered,
the user can select a specific vulnerability report (CWE, CVE, or CPE) to perform the reasoning. The
user can define the number of hops to expand the query and choose whether the expansion includes
conceptual relations or only directly related reports.

3.3. Evaluation

We measured new relation discovery after KG augmentation using link prediction with AmpliGraph
[16]. On the CWE subgraph, TransE, ComplEx, and DistMult [13] were evaluated; ComplEx performed



Table 1
Example query and reasoning results. The query is answered: a) by the LLM using only the plain text from
the report descriptions, and b) by the graph-LLM reasoning process using graph data. The graph-LLM option
provides more relevant content by leveraging information from the knowledge graph.

Query Reasoning result
Where is the issue
located in the
affected Extreme
Networks EXOS
versions

Ground truth answer: In the Web GUI.
Graph-LLM answer: Based on the graph data, the issue is located in the
Web GUI of Extreme Networks EXOS versions before v.22.7 and before v.30.2.
The problem stems from the failure of the Web GUI to restrict URL access,
allowing attackers to access sensitive information or escalate privileges.

Figure 3: The UI supports Graph-LLM reasoning to enhance explainability. Users can use the interface to
validate the KG retrieved and used by the LLM. It is also possible to adjust the number of hops for QA expansion
(conceptual or based on similar connected reports) and to specify particular security reports.

best, and the KG with text mining content (no DBpedia) achieved the highest results (Table 2). The
augmented KG showed low performance because the LLM struggled with KG excerpt selection; that
is, it chose an incorrect meaning for the expanded concept on DBpedia, adding noise and negatively
affecting link prediction. Using a different LLM that handles this task better might improve performance.

Table 2
In link prediction task, KG augmented with content produced by text mining content improved the results
compared to the baseline (structured). Mean Rank lower is better, and the other metrics higher are better.

Link prediction using ComplEx (best model) Mean Rank MRR Hits@1 Hits@10
CWE Structured (base line) 426.32 0.2493 0.1815 0.3705

CWE Augmented No DBpedia (ours) 395.06 0.3015 0.2330 0.4310
CWE Augmented Full (ours) 468.08 0.2808 0.2075 0.4255

In addition, the quality of the responses was measured by Gemma 3 27B model [17] with a multi-hop
expansion of 5 levels. LLM with ground truth refers to answers derived from the text descriptions in
vulnerability reports. In contrast, Graph LLM responses are generated using hybrid reasoning. In the
evaluation, Graph LLM produced showed the best performance (Table 3).



Table 3
Graph-LLM shows improved performance over LLM with ground truth security reports using 1000 CWE entries
and 3000 Question-Answer pairs.

Category Dataset Accuracy Relevance Clarity Completeness

CWE
LLM with ground truth 0.648 0.520 0.530 0.266
Graph-LLM (ours) 0.802 0.688 0.670 0.630

4. Conclusions and Future Work

This poster presents a hybrid framework for cybersecurity threat reasoning that combines automatically
constructed knowledge graphs with the reasoning capabilities of large language models (LLMs). The
framework created graphs that represent causal factors and was enriched through DBpedia augmenta-
tion. To overcome LLM limitations in complex graph operations, we developed a dedicated subgraph
extraction process. This module lets LLMs handle language comprehension and logical reasoning, while
the graph module performs structured inference. Together, this hybrid pipeline provides a scalable
and interpretable solution for addressing complex cybersecurity queries, with potential applications
extending beyond this domain. As a practical application, the proposed visualization system provides a
tool for QA analysis. As part of our future work, we plan to evaluate additional queries and scenarios.
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