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Abstract
Knowledge graphs and ontologies represent entities and their relationships in a structured way, having gained
significance in the development of modern AI applications. Integrating these semantic resources with machine
learning models often relies on knowledge graph embedding models to transform graph data into numerical
representations. Therefore, pre-trained models for popular knowledge graphs and ontologies are increasingly
valuable, as they spare the need to retrain models for different tasks using the same data, thereby helping to
democratize AI development and enabling sustainable computing.

In this paper, we present Bio-KGvec2go, an extension of the KGvec2go Web API, designed to generate and
serve knowledge graph embeddings for widely used biomedical ontologies. Given the dynamic nature of these
ontologies, Bio-KGvec2go also supports regular updates aligned with ontology version releases. By offering
up-to-date embeddings with minimal computational effort required from users, Bio-KGvec2go facilitates efficient
and timely biomedical research.
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1. Introduction

Knowledge Graphs (KGs) contain factual knowledge about real-world entities and their relations in
a fully machine-readable format [1]. Many modern KGs represent this information according to a
formal definition of the domain knowledge given by an ontology. Ontologies are semantic models
for a domain in which each entity is precisely defined, and the relationships between entities are
parameterized or constrained [2]. In life sciences, the use of ontologies has gained prominence, with
increasing importance in biomedical research [3]. Ontologies are applied across various areas of biology
and medicine, ranging from gene function [4] to drug characterization [5]. Phenotype ontologies are
also available for multiple species for the characterization of diseases [6]. Open repositories, such as
BioPortal [7], provide access to hundreds of biomedical ontologies.

Given the richness of these semantic resources, they have been exploited in a wide variety of machine
learning (ML) tasks, including entity classification, link prediction, graph classification, and relation
prediction, among others. One of the challenges faced by approaches that combine artificial intelligence
(AI) with KGs and ontologies is transforming graph data into a suitable representation that can be
processed by ML algorithms. A current major trend is the use of KG embedding (KGE) methods, which
transform entities and relationships in a KG into a lower-dimensional vector space while attempting
to preserve the graph structure and, in some cases, semantic information [8]. KGEs are then fed as
features for ML algorithms to support several applications, with particular success in the life sciences.
From finding new treatments for existing drugs to diagnosing patients and identifying associations
between diseases and genes, KGEs have been employed in a wide range of biomedical applications [9].
Therefore, pre-trained embeddings for popular biomedical ontologies are increasingly valuable,

sparing the need to retrain the models for different tasks using the same data, and allowing greener
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computing and sustainable AI development. However, such pre-trained models are not always readily
available for the biomedical domain, and when available, they typically reflect a static snapshot of the
KG at a specific point in time. This poses a challenge, given that knowledge is constantly evolving.
Discoveries are published daily, rendering some facts obsolete and revealing new knowledge. As a result,
the development of KGs and ontologies is dynamic [10]. Relying on embeddings generated on outdated
versions risks overlooking critical insights and recent advances, limiting downstream performance.

This paper addresses the challenge of providing up-to-date embeddings for the two most successful
biomedical ontologies - GeneOntology [4] andHuman PhenotypeOntology [6]. We present a framework
capable of periodically collecting new KG versions, computing embeddings, and making them publicly
available to support downstream research. These embeddings are provided via the Bio-KGvec2go
platform, www.bio.kgvec2go.org, which is built upon KGVec2go [11]. KGvec2go provides a Web API
that enables access to embeddings, computes entity similarity, and identifies related concepts based on
input embeddings. While KGvec2go makes available RDF2Vec embeddings [12] for four general-purpose
KGs (ALOD, DBpedia, WordNet, and Caligraph), it does not support biomedical KGs or reflect KG
evolution. Bio-KGvec2go expands the range of KGs to encompass biomedical ontologies and other KGE
models, but also recomputes the embeddings when new ontology versions are released.

By publicly providing regularly updated and accessible KGEs, we aim to facilitate ongoing research
and democratize access to these resources. Even researchers without computational power to train
KGE models can conduct analyses and investigations with the latest data representations. Furthermore,
it facilitates the study of knowledge evolution, allowing researchers to explore how changes across KG
versions impact the resulting embeddings and reflect shifts in domain knowledge over time.

The remainder of this paper is structured as follows: we first describe the two biomedical ontologies
explored, followed by an overview of the KGE models employed. Finally, we present the implementation
details and functionalities of the Bio-KGvec2go platform.

2. Biomedical Ontologies

Currently, Bio-KGvec2go focuses on providing embeddings for two widely used biomedical ontologies.

Gene Ontology (GO) GO [4] defines a hierarchy of more than 40 000 classes that describe protein
functions and their relationships. It can be represented as a graph where nodes are GO classes and
edges define relationships between them (e.g., 𝑖𝑠_𝑎, 𝑝𝑎𝑟 𝑡_𝑜𝑓, 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑠), with the majority of 𝑖𝑠_𝑎 relations.
Functions in GO are described across three domains: the biological processes, the molecular functions,
and the cellular components. GO was initially proposed in 1998 by a consortium of researchers. Since
then, it has been constantly reviewed, including the addition or deprecation of terms and reorganization
of the relationship structure. Most revisions result from advances in biological knowledge or improve-
ments in the precision of experimental technologies. Official GO versions are released monthly1. GO
embeddings have been widely used in multiple applications, such as protein function prediction [13],
protein interactions prediction [14, 15], and gene-disease associations discovery [16].

Human Phenotype Ontology (HP) HP [6] characterizes the phenotypic abnormalities in human
hereditary diseases, covering key aspects such as the phenotypic abnormalities themselves, past medical
history, mode of inheritance, clinical course, clinical modifiers, and frequency. The HP contains more
than 18 000 classes represented in a directed acyclic graph, where each node represents a distinct
phenotype, and all relationships are of the type 𝑖𝑠_𝑎, establishing a hierarchy. HP was initially developed
in 2008 at the Charité University Hospital in Berlin, and it has been continuously updated through a
combination of expert curation, integration of new findings from the biomedical literature, and feedback
from the global community of clinicians and researchers who use it. While HP does not follow a formal
monthly release model like GO, new official versions are made available regularly (approximately every

1https://release.geneontology.org/
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month to two months) through its GitHub repository2. HP embeddings have also been employed in
critical biomedical tasks, including patient similarity computation [17], genotype-phenotype association
prediction [18], and gene-disease association prediction [19].

3. Knowledge Graph Embedding Models

KGEmethods map each node to a lower-dimensional space where the underlying KG structure and other
semantic information are preserved as much as possible. Numerous KGE models have been proposed in
the literature, contributing to a substantial body of work as highlighted in different surveys [20].
The KGE methods can be broadly categorized based on their underlying mechanisms for capturing

graph structure and semantic information: translational distance models interpret relations as vector
translations, semantic matching models focus on similarity scoring, geometric models exploit spatial
structures to encode logical constraints, and random walks-based models use paths through the graph
to capture long distance relationships. While translational distance models and semantic matching
models focus on exploring the KG triples solely, random walks-based and geometric models also
include additional information, namely the hierarchical information. To encompass a diverse range of
knowledge representation approaches, this work employs six representative KGE models spanning the
different categories:

• TransE [21] is the most representative translational distance model, treating relations as vector
translations between entities. However, TransE struggles to handle one-to-many and many-to-
many relations. Tackling this, TransR [22] introduces a space for each relation.

• Semantic matching approaches exploit similarity between entities and relations. DistMult [23]
achieves this by employing a bilinear scoring function with diagonal relation matrices. HolE [24]
uses circular correlation to create compositional representations while remaining scalable.

• RDF2Vec [12] is a random walk-based approach built upon two main steps: (i) producing random
walks in the graph that are akin to a corpus of sentences; (2) using those sequences as input to a
neural language model that learns a latent low-dimensional representation.

• BoxE [25] is a geometric approach that represents entities as points, and relations as a set of
hyper-rectangles (boxes), capturing logical patterns such as hierarchy, symmetry, or intersection.

Regarding implementation, the PyKEEN package3 is used to train TransE, TransR, DistMult, HolE,
and BoxE, while pyRDF2Vec4 is employed for RDF2Vec. To ensure a fair comparison, all models are
trained with default hyperparameters, except for the number of epochs, set to 100, and the embedding
dimension, set to 200.

4. Bio-KGvec2go

This paper presents a framework that collects new versions of biomedical ontologies, computes em-
beddings, and makes them publicly available through Bio-KGvec2go, www.bio.kgvec2go.org. The
framework is designed to support an automated update mechanism that periodically downloads ontol-
ogy releases from predefined URLs, computes checksums, and compares them with those of previously
stored versions. If a change is detected, all embeddings are recomputed and made available.

Regarding the platform Bio-KGvec2go, it is built upon the existingWeb API, KGvec2go [11], to provide
access to up-to-date embedding models trained on biomedical ontologies. KGvec2go is implemented
in Python using Flask and can be deployed with the Apache HTTP Server. The KGvec2go API, www.
kgvec2go.org, offers a RESTful service designed to operate efficiently on Internet-connected devices
with limited CPU and RAM (e.g., smartphones). Currently, Bio-KGvec2go offers three functionalities,

2https://github.com/obophenotype/human-phenotype-ontology/releases
3https://pykeen.readthedocs.io/en/stable/
4https://pyrdf2vec.readthedocs.io/en/latest/
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as shown in Figure 1: (i) downloading the embeddings for the various ontology versions, (ii) computing
semantic similarity between two classes, and (iii) retrieving the top 10 most similar classes for any
given ontology class.

All the code is available on GitHub5. Additionally, the trained KGE models are available on Zenodo6,
ensuring long-term preservation. The models are accompanied by metadata using the PROV stan-
dard [26], describing the input ontology, the KGE model used, and the corresponding hyperparameters.

Download Users can select an embedding model and download a corresponding JSON file containing
the vector representations for each ontology class, encoded as 200-dimensional floating-point arrays.
As of now, Bio-KGvec2go hosts embeddings for six distinct versions of each biomedical ontology, with
the first version dating back to 2023 and subsequent versions released approximately every six months.
Besides the downstream use of the embeddings, this functionality enables researchers to compare
embeddings across different ontology snapshots, supporting studies on ontology evolution.

Similarity Users can access the semantic similarity between two ontology classes by selecting an
embedding model and providing either class identifiers or textual labels (with automatic normalization
of case and whitespace). Bio-KGvec2go retrieves the corresponding vectors of the two classes from
the most up-to-date version and computes the cosine similarity. The resulting score, ranging from
-1 to 1, indicates the degree of similarity, where 1 denotes perfect similarity and -1 reflects complete
dissimilarity. This functionality is particularly useful for ontology curation and annotation.

Top Closest Concepts Users can select an embedding model and specify the target class by the
identifier or label (with automatic normalization) to obtain the top 10 most semantically similar ontology
classes. Bio-KGvec2go retrieves the most up-to-date version of embeddings and computes cosine
similarities between the input vector and all other class vectors, returning a ranked list. The output is
presented as a detailed table listing each related class by its identifier and label, the similarity score,
and a direct URL for further exploration. This functionality is well-suited for semantic search and
identification of candidates for enrichment analyses.

(a) Download (b) Similarity and Top Closest Concepts

Figure 1: Functionalities of Bio-KGvec2go.

5https://github.com/ritatsousa/biokgvec2go
6https://zenodo.org/records/15865665
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5. Use Cases

Bio-KGvec2go has been designed as a user-friendly platform, and it can support a broad spectrum of
biomedical research. One key use case is in ontology-based ML approaches, where the embeddings
can serve as input features for predictive models across diverse biomedical tasks. These approaches
have become increasingly popular, as they allow the integration of structured biological knowledge.
For example, GO embeddings have been used to predict the function of uncharacterized proteins or to
identify which proteins are likely to interact with each other. These interactions are crucial for many
functions in biology and are highly relevant to disease states. Similarly, HP embeddings have been
employed to uncover new associations between genes and diseases, improving the understanding of
disease mechanisms. HP embeddings have also been used to improve disease diagnosis by comparing
a patient’s phenotypic profile to known disease profiles represented in the embedding space. Since
discovering protein interactions or gene-disease associations through laboratory experiments is expen-
sive and time-consuming, ML-based approaches help to generate candidate pairs, narrowing the search
space for lab validation and substantially reducing both the time and cost of experimental research.

Another important application lies in ontology development, curation, and semantic annotation. Both
GO and HP are manually curated by domain experts, many of whom have limited computational expe-
rience and therefore benefit from accessible tools. The similarity and top closest concepts functionalities
provided by Bio-KGvec2go are particularly useful for these tasks. For instance, when annotating a gene
with a specific function, researchers can use the tool to find the most semantically similar GO terms,
ensuring more accurate and consistent annotations. Beyond annotation, this tool can help identify gaps
or inconsistencies in the ontology itself.

6. Conclusion

This paper presents Bio-KGvec2go, a FAIR resource designed to provide up-to-date pre-trained biomed-
ical embeddings. Bio-KGvec2go extends the original KGvec2go API by incorporating multiple KGE
models beyond RDF2Vec and by supporting several versions of the same biomedical KGs. By democra-
tizing access to these embeddings, Bio-KGvec2go enables researchers to accelerate experimentation and
improve performance across various tasks, including disease prediction, identification of gene-disease
associations, and drug discovery. Moreover, by facilitating the reuse of pre-trained embeddings, it
contributes to reducing the carbon footprint.

As futurework, we plan to expand Bio-KGvec2go to support additional biomedical KGs and embedding
models. We also aim to improve the similarity and top closest concepts search functionalities by
introducing features such as autocomplete for concept labels and tolerance to minor typos, ensuring
that users can retrieve relevant concepts even if the input is not an exact match.
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