
TyRaL: End-to-End Document-level Relation Extraction
via Type-Constrained Rule Learning
Mierzhati Alimu1, Chaochao Du1 and Xiaowang Zhang1,∗

1College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China

Abstract
In recent years, Document-level Relation Extraction (DocRE) has encountered significant challenges in capturing
complex entity relationships and reasoning over long-range dependencies. Existing methods primarily focus on
learning implicit representations or applying chain-like logical rules, but they often overlook differences in en-
tity types and the significance of type constraints, potentially leading to errors in relation reasoning. This poster
introduces a type-constrained enhanced chain-like rule (TC rule) and proposes an end-to-end document-level
relation extraction framework (TyRaL) to address this issue. By incorporating a novel rule reasoning module,
TyRaL transforms the discrete rule learning problem into a parameter optimization task in continuous space,
enabling both explicit and implicit learning of entity type constraint rules and thereby enhancing the model’s
logical consistency and interpretability. Experimental results on the standard DWIE dataset show that TyRaL
significantly outperforms existing rule-enhanced methods in both F1 and Ign F1 metrics. It demonstrates su-
perior logical modeling and semantic reasoning capabilities while offering new perspectives and solutions for
research in the DocRE field.
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1. Introduction

DocRE aims to identify all relations between entity pairs across an entire document. It faces greater
challenges in modeling long-range context and complex dependencies between entities than sentence-
level extraction. Existing approaches can be broadly categorized into three groups: sequence-based
models, graph-based models, and rule-constrained models. While the first two focus on learning im-
plicit representations, they often lack logical interpretability and struggle to infer potential relations.
In contrast, rule-based methods offer better transparency and reasoning capabilities. MILR[1] and
BCBR[2] learn chain-like rules from annotated data, while CaDRL[3] and JMRL[4] generate such rules
dynamically during training.
Although the above methods have made notable progress in improving model performance, the

rules they learn are based on connecting entities through shared variables, which often overlooks dif-
ferences in entity types and may lead to incorrect predictions in complex cases. For example, consider
the following chain-like rule: hasFathernew(𝑥, 𝑦) ← hasChild(𝑥, 𝑦) ∧ Male(𝑦). In this rule, Male(𝑦)
functions as an explicit type constraint, specifying that 𝑦 is male and thereby preventing incorrect
inferences—such as misclassifying a mother as a father. However, type constraints can also be in-
ferred implicitly from relational context. For instance, if 𝑦 is described as someone’s brother or uncle,
it is reasonable to infer that 𝑦 is male, even without an explicit Male(𝑦) statement. These implicit type
constraints are especially valuable when explicit type annotations are unavailable or incomplete.
To address this issue, we introduce Type-Constrained Enhanced Chain-like Rules (TC Rules), which

extend standard logical rules with type constraints of both kinds. Based on this, we propose End-
to-End Document-level Relation Extraction via Type-Constrained Rule Learning (TyRaL). This novel
end-to-end framework transforms rule learning from a discrete problem into continuous parameter op-
timization, building a type-constrained neural reasoningmodule. Experimental results on the DWIE[5]
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dataset show that TyRaL outperforms existing rule-based DocRE models in logical consistency and re-
lation extraction.

 

Input Document
          [1]Prince Harry gets engaged to actress 

Meghan Markle.  [2]Britain's Prince Harry is 

engaged to his US partner Meghan Markle, his 

father Prince Charles has announced.  [3]... and 

the couple  are to live in  Kensington Palace.  

[4]Ashwathy Kurup, better known by her stage 

name  Parvathy, is an Indian film actress and 

classical dancer ... 
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hasChild(x,y) ← hasSpouse(x,z) ∧ hasChild(z,y)

hasFather(x,y) ← hasParent(x,z) ∧ Male(y)

···

hasFather(x,y) ← hasParent(x,z) ∧ (brotherOf(y,u) ∨ 

uncleOf(y,v))

maleLeadOf(x,y) ← actCharacter(x,z) ∧ CharacterOf(z,y) 

∧ mainCharacter(z) ∧ (brotherOf(x,u) ∨ uncleOf(x,v))

Loss λＬ1
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Figure 1: The overview of the TyRaL framework.

2. Approach

2.1. Problem Definition

Given a document 𝐷 containing a set of named entities 𝐸𝐷 = {𝑒𝑖}𝑛𝑖=1, the goal of DocRE is to predict
the semantic relation 𝑟 ∈ 𝑅 ∪ {NA} between all distinct entity pairs (𝑒ℎ, 𝑒𝑡), where 𝑅 denotes a set of
predefined relation types, and NA represents no relation. An entity 𝑒𝑖 may have multiple mentions in

the document, denoted as {𝑚𝑖𝑗}
𝑁𝑒𝑖
𝑖=1. The existence of a relationship between entities needs to be judged

based on comprehensive contextual evidence between these mentions in the document.
An original DocRE model usually calculates a score vector 𝐹(𝑒ℎ, 𝑒𝑡 , 𝐷) ∈ ℝ|𝑅|+1 for each entity pair,

where the k-th element represents the logit value of the k-th relation type, and the last element cor-
responds to ”no relation” NA. During the training phase, Binary Cross-Entropy (BCE) or Adaptive
Thresholding (AT) loss functions are usually used.

In the inference phase, the model uses an activation function 𝜎 (such as Softmax) to map logits to
probability values, and filters them according to a threshold 𝜖 to predict the set of relation triples, which
is in the form:

𝑌 = {(𝑒ℎ, 𝑟 , 𝑒𝑡) ∣ [𝜎 (𝐹(𝑒ℎ, 𝑒𝑡 , 𝐷))]𝑟 > 𝜖} (1)

where 𝜖 is the set confidence threshold.

2.2. Chain-like and Type-Constrained Rules

We introduce an interpretable logical rule structure to model implicit semantic paths between entities
in a document. Define a binary variable 𝑟 (𝑥, 𝑦) to indicate whether the relation 𝑟 ∈ 𝑅 holds between
entities 𝑥 and 𝑦 . When the relation is true, 𝑟 (𝑥, 𝑦) = 1; otherwise, 𝑟 (𝑥, 𝑦) = 0.
A chain-like logical rule consists of a rule head and a rule body. The rule head represents the target

relation 𝑟ℎ𝑒𝑎𝑑 (𝑥, 𝑦), and the rule body is a conjunction of binary atoms, where each body atom shares
a variable with the adjacent previous atom and another variable with the adjacent next atom, forming
a chain structure. The general form of a chain-like logical rule is as follows:

𝑟ℎ𝑒𝑎𝑑 (𝑥, 𝑦) ← 𝑟1 (𝑥, 𝑧1) ∧ 𝑟2 (𝑧1, 𝑧2) ∧ ⋯ ∧ 𝑟𝑙 (𝑧𝑙−1, 𝑦) (2)



Building on this, we introduce TC Rules by adding unary type atoms to impose semantic restrictions
on chain-like logical rules. Let 𝐶 be the set of entity types. A type-constrained rule with length 𝐿 is in
the form:

𝑟ℎ𝑒𝑎𝑑 (𝑥, 𝑦) ← 𝑐1 (𝑥) ∧ 𝑐2 (𝑧1) ∧ 𝑟1 (𝑥, 𝑧1) ∧ 𝑟2 (𝑧1, 𝑧2) ∧ ⋯ ∧ 𝑟𝑙 (𝑧𝑙−1, 𝑦) ∧ 𝑐𝐿+1 (𝑦) (3)

Where 𝑐1, 𝑐2, … , 𝑐𝐿+1 ∈ 𝐶 are entity types, and 𝑟𝑖 are intermediate relation paths. This rule not only
depends on the relational path structure but also requires each entity node on the path to satisfy specific
type conditions, thereby improving the semantic rationality and interpretability of the rule.

2.3. Type-Constrained Rule Reasoning Module

Figure 1 shows an overview of our model framework. We propose a type-constrained rule reason-
ing module to enable end-to-end learning of TC Rules. This module is the core component of the
TyRaL framework, and its basic idea is to transform the rule learning problem in discrete space into
a parameter learning problem in continuous space, thereby simulating the reasoning process of type-
constrained rules in a differentiable manner. This module is jointly trained with the DocRE to optimize
the downstream relation prediction target.
Let 𝑁 be the maximum number of rules to be learned, 𝐿 the maximum number of atoms in each rule,

and define the extended relation set as 𝑅∗ = 𝑅∪𝑅−∪{𝐼 }, where 𝑅 = {𝑟𝑖}1≤𝑖≤𝑛 denotes the original relation
set, 𝑅− = {𝑟𝑖}𝑛+1≤𝑖≤2𝑛 the inverse relations, and 𝐼 = 𝑟2𝑛+1 the identity relation. We define the extended
logit 𝐹+(𝑥, 𝑦 , 𝑑) ∈ ℝ2𝑛+1, where [𝐹+(𝑥, 𝑦 , 𝑑)]𝑖 = [𝜎(𝐹(𝑥, 𝑦 , 𝑑))]𝑖 and [𝐹+(𝑥, 𝑦 , 𝑑)]𝑖+𝑛 = [𝜎(𝐹(𝑦, 𝑥, 𝑑))]𝑖 for
all 1 ≤ 𝑖 ≤ 𝑛, and [𝐹+(𝑥, 𝑦 , 𝑑)]2𝑛+1 = 1 if 𝑥 = 𝑦 , or 0 otherwise, with 𝜎 denoting the sigmoid function.
The goal of our rule reasoning module is, given an entity pair (𝑥, 𝑦) ∈ 𝐸𝑑 × 𝐸𝑑 and a document 𝑑 , to

estimate a truth degree 𝑠(𝑁 ,𝐿)
𝑟 ,𝑥,𝑦 ,𝑑 for each relation 𝑟 ∈ 𝑅∗, indicating whether the relation can be inferred

through at most 𝑁 type-constrained rules with length 𝐿. For each original relation 𝑟 ∈ 𝑅, the 𝑘-th rule
(1 ≤ 𝑘 ≤ 𝑁 ), and the 𝑙-th rule atom (1 ≤ 𝑙 ≤ 𝐿), the intermediate truth degree 𝑠(𝑘,𝑙)𝑟 ,𝑥,𝑦 ,𝑑 is defined as
follows:

𝑠(𝑘,𝑙)𝑟 ,𝑥,𝑦 ,𝑑 =
⎧
⎪
⎨
⎪
⎩

𝑠(𝑘,1)𝑟 ,𝑥,𝑦 ,𝑑 = 𝜑(𝑘,1)𝑟 (𝑥) 𝜑(𝑘,𝑙+1)𝑟 (𝑦)
2𝑛+1
∑
𝑖=1

𝜔(𝑟 ,𝑘,1)
𝑖 [𝐹+ (𝑥, 𝑦 , 𝑑)]𝑖, 𝑙 = 1

𝑠(𝑘,𝑙)𝑟 ,𝑥,𝑦 ,𝑑 = 𝜑(𝑘,𝑙+1)𝑟 (𝑦)
2𝑛+1
∑
𝑖=1

𝜔(𝑟 ,𝑘,𝑙)
𝑖 ∑

(𝑧,𝑟𝑖,𝑦)∈𝐸𝑑×𝑅∗×𝐸𝑑
𝑠(𝑘,𝑙−1)𝑟 ,𝑥,𝑧,𝑑 [𝐹+ (𝑧, 𝑦 , 𝑑)]𝑖, 2 ≤ 𝑙 ≤ 𝐿

(4)

where 𝜔𝑟 ,𝑘,𝑙 ∈ [0, 1]2𝑛+1 is the predicate selection weight of the 𝑙-th atom in the 𝑘-th rule, normalized
by Softmax to approximate one-hot, simulating the predicate selection process.
𝜑(𝑘,𝑙)𝑟 (𝑢) is a type constraint function representing the score that entity 𝑢 satisfies specific type con-

ditions:

𝜑(𝑘,𝑙)𝑟 (𝑢) = 𝜎01 (𝛼 (𝑟 ,𝑘,𝑙)
𝑚
∑
𝑖=1

ℎ(𝑟 ,𝑘,𝑙)𝑖 𝕀 ((𝑢, 𝑇 𝑦𝑝𝑒, 𝑐𝑖) ∈ 𝐺𝑡𝑦𝑝𝑒) + 𝛽(𝑟 ,𝑘,𝑙)
2𝑛
∑
𝑖=1

ℎ(𝑟 ,𝑘,𝑙)𝑖+𝑚 𝜌𝑢𝑟𝑖 )) (5)

where 𝜎01(𝑥) = max(min(𝑥, 1), 0), ℎ𝑟 ,𝑘,𝑙 ∈ [0, 1]𝑚+2𝑛 is trainable type selection weights, and 𝜌𝑢𝑟𝑖 = 𝑉⊤𝑢 𝐵𝑟𝑖
denotes the interaction between entity 𝑢 and relation 𝑟𝑖. The parameters 𝛼 (𝑟 ,𝑘,𝑙) and 𝛽(𝑟 ,𝑘,𝑙) control
whether explicit and implicit type constraints are applied.

The ultimate truth degree is calculated by aggregating the intermediate degrees of N rules:

𝑠(𝑁 ,𝐿)
𝑟 ,𝑥,𝑦 ,𝑑 =

𝑁
∑
𝑘=1

𝛼 (𝑘)𝑟 ⋅ 𝑠(𝑘,𝐿)𝑟 ,𝑥,𝑦 ,𝑑 (6)

Where 𝛼 (𝑘)𝑟 ∈ [−1, 1] is the confidence of rule 𝑘, normalized by the Tanh activation function.



Then, we define the final logit prediction by combining output logits from the original DocRE model
with the ultimate truth degrees from the type-constrained rule reasoning module:

𝜙𝑟 (𝑥, 𝑦 , 𝑑) = [𝐹(𝑥, 𝑦 , 𝑑)]𝑟 + 𝑠(𝑁 ,𝐿)
𝑟 ,𝑥,𝑦 ,𝑑 (7)

3. Experiments

We uniformly denote the enhanced model as TyRaL-X, where 𝑋 represents the name of the original
DocRE model. Table 1 shows the experimental results of TyRaL on the DWIE dataset. The results
indicate that TyRaL achieves stable and significant performance on all integrated DocRE backbone
models, and is comprehensively superior to the original models in F1 and Ign F1 metrics, demon-
strating good generality and robustness. Compared with the current state-of-the-art rule-enhanced
methods, CaDRL and JMRL, TyRaL introduces key innovations in logical modeling. CaDRL relies on
differentiable chain-like rule learning to improve logical consistency, while JMRL alleviates the error
propagation problem through a joint training mechanism. In contrast, TyRaL proposes more refined
type-constrained rules, significantly expanding the expressive power of the rules and enabling the cap-
ture of more fine-grained semantic constraints and structural relationships between entity types—rules
of this kind have not been systematically modeled in existing methods. In our experiments, we adopt
the F1 metric. However, some relational facts appear in both the training and the dev/test sets. As a
result, a model may memorize these relations during training and achieve artificially high performance
on the dev/test set, introducing evaluation bias. Such overlap is inevitable, since many common rela-
tional facts are likely to occur across different documents. Therefore, we also report the F1 scores after
excluding those relational facts shared by the training and dev/test sets, which we denote as Ign F1.

Table 1
Comparison results on the DWIE dataset.

Method PLM Dev Test
F1 (%) Ign F1 (%) F1 (%) Ign F1 (%)

BiLSTM [6] GloVe 39.66 32.14 43.54 33.88
MILR-BiLSTM [1] GloVe 41.22 ±1.56 34.05 ±1.91 44.65 ±1.91 35.09 ±1.21
CaDRL-BiLSTM [3] GloVe 44.02 ±4.36 38.26 ±6.16 51.43 ±7.89 42.77 ±8.89
JMRL-BiLSTM [4] GloVe 43.68 ±4.02 37.88 ±5.74 50.70 ±7.16 42.68 ±8.80
TyRaL-BiLSTM (ours) GloVe 44.51 ±3.75 39.10 ±5.30 52.35 ±6.90 44.23 ±8.10
GAIN [7] BERTbase 63.81 58.89 67.45 61.36
MILR-GAIN [1] BERTbase 65.85 ±2.04 61.22 ±2.33 69.23 ±1.78 62.77 ±1.41
CaDRL-GAIN [3] BERTbase 66.49 ±2.68 63.51 ±4.62 70.22 ±2.77 66.63 ±5.27
JMRL-GAIN [4] BERTbase 66.03 ±2.22 61.62 ±2.73 69.66 ±2.21 64.59 ±3.23
TyRaL-GAIN (ours) BERTbase 66.85 ±2.05 62.47 ±2.40 70.42 ±2.02 65.35 ±3.10
ATLOP [8] BERTbase 69.87 63.37 75.13 67.29
MILR-ATLOP [1] BERTbase 72.05 ±2.97 67.18 ±3.81 76.51 ±1.38 69.84 ±2.55
CaDRL-ATLOP [3] BERTbase 74.02 ±4.15 68.32 ±4.95 78.36 ±3.23 71.52 ±4.23
JMRL-ATLOP [4] BERTbase 73.91 ±4.04 68.41 ±5.04 77.85 ±2.72 70.92 ±3.63
TyRaL-ATLOP (ours) BERTbase 74.76 ±3.88 69.05 ±4.61 78.55 ±2.51 71.65 ±3.30

4. Limitation

While our study has made some progress, several limitations remain. First, the experiments were con-
ducted exclusively on the DWIE dataset, which raises concerns about the generalizability of the find-
ings to other domains and datasets. In addition, the current evaluation relies primarily on quantitative
metrics and lacks case studies. We plan to address these limitations in future work.



5. Conclusion

In this poster, we propose an end-to-end learning framework, TyRaL, featuring a type-constrained rule
reasoning module that simulates logical rules to enhance reasoning ability. Experiments on the DWIE
dataset demonstrate its effectiveness and superiority. Future work will explore integrating logical
constraints into large language models to discover more accurate and generalizable rules.

Acknowledgments

This work was supported by the Project of Science and Technology Research and Development Plan
of China Railway Corporation (N2023J044).

Declaration on Generative AI

During the preparation of this work, we used ChatGPT in order to: Grammar and spelling check.
After using this tool, we reviewed and edited the content as needed and take full responsibility for the
publication’s content.

References

[1] S. Fan, S. Mo, J. Niu, Boosting document-level relation extraction by mining and injecting log-
ical rules, in: Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, 2022, pp. 10311–10323.

[2] Y. Liu, Z. Zhu, X. Zhang, Z. Feng, D. Chen, Y. Li, Document-level relationship extraction by bidi-
rectional constraints of beta rules, in: Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, 2023, pp. 2256–2266.

[3] K. Zhang, P. Wu, B. Yu, K. Wu, A. Zheng, X. Huang, C. Zhu, M. Peng, H. Zan, Y. Song, Cadrl:
Document-level relation extraction via context-aware differentiable rule learning, in: Proceedings
of the 31st International Conference on Computational Linguistics, 2025, pp. 8272–8284.

[4] K. Qi, J. Du, H. Wan, End-to-end learning of logical rules for enhancing document-level relation
extraction, in: Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2024, pp. 7247–7263.

[5] K. Zaporojets, J. Deleu, C. Develder, T. Demeester, Dwie: An entity-centric dataset for multi-task
document-level information extraction, Information Processing & Management 58 (2021) 102563.

[6] Y. Yao, D. Ye, P. Li, X. Han, Y. Lin, Z. Liu, Z. Liu, L. Huang, J. Zhou, M. Sun, Docred: A large-scale
document-level relation extraction dataset, arXiv preprint arXiv:1906.06127 (2019).

[7] S. Zeng, R. Xu, B. Chang, L. Li, Double graph based reasoning for document-level relation extrac-
tion, arXiv preprint arXiv:2009.13752 (2020).

[8] W. Zhou, K. Huang, T. Ma, J. Huang, Document-level relation extraction with adaptive threshold-
ing and localized context pooling, in: Proceedings of the AAAI conference on artificial intelligence,
volume 35, 2021, pp. 14612–14620.


	1 Introduction
	2 Approach
	2.1 Problem Definition
	2.2 Chain-like and Type-Constrained Rules
	2.3 Type-Constrained Rule Reasoning Module

	3 Experiments
	4 Limitation
	5 Conclusion

