CEUR-WS.org/Vol-4085/paper46.pdf

C

CEUR

Workshop
Proceedings

JSimELHExplainer: A Robust JAVA Library for Explainable
Semantic Similarity for ELH Description Logic Ontology

Teeradaj Racharak™, Watanee Jearanaiwongkul’

TAdvanced Institute of So-Go-Chi (Convergence Knowledge) Informatics, Tohoku University, Miyagi, Japan

Abstract

We present a newly developed Java library that implements a neuro-symbolic framework for computing semantic
similarity between concepts in Description Logic &% # ontologies. This library provides an implementation of a
hybrid approach combining a structural-based method in ontology reasoning with distributional semantics derived
from pre-trained word embeddings. It supports efficient similarity computation and interpretable explanations for
the results. Designed with scalability in mind, it guarantees polynomial-time execution and supports large-scale
ontologies with thousands of concepts and complex hierarchical structures. For explainability, it produces
fine-grained explanations by identifying the contributing primitive and existential concept pairs, as well as the
semantic alignments found in the embedding space. These explanations help users understand why a similarity
score is given, making the results transparent and auditable. The API is embedding-agnostic and compatible with
a wide range of vector space models, including static embeddings (e.g., Word2Vec) and contextualized models
(e.g., BERT). This tool enables the development of explainable, knowledge-driven Al systems in domains where
both structured ontological modeling and contextual semantic understanding are essential.

Keywords
Semantic Similarity, Non-standard Reasoner, Ontology, Explainable Al, JAVA API

1. Introduction

Measuring semantic similarity between ontology concepts is essential in applications such as clinical
decision support, semantic search, and ontology alignment [1, 2]. Structural-based approaches in
ontology reasoning offer interpretability and logical consistency but are limited in capturing hidden or
implicit relationships. In contrast, embedding-based methods leverage distributional semantics from
large text corpora to model contextual meaning, enabling generalization, robustness to lexical variation,
and the ability to capture similarity even in sparsely modeled ontologies.

To bridge the strengths of both approaches, we present a Java API implementing a neuro-symbolic
framework (originally proposed in [3]) for concept similarity in Description Logic & #. The API
combines structural reasoning over ontology hierarchies with pre-trained word embeddings to compute
similarity scores that are both explainable and semantically enriched. It also supports automatic
generation of human-readable explanations, promoting transparent and trustworthy Al

ISWC 2025 Companion Volume, November 2—6, 2025, Nara, Japan

*Corresponding author.

Q racharak@tohoku.ac.jp (T. Racharak); watanee@tohoku.ac.jp (W. Jearanaiwongkul)
® 0000-0002-8823-2361 (T. Racharak); 0000-0003-2101-1625 (W. Jearanaiwongkul)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5



mailto:racharak@tohoku.ac.jp
mailto:watanee@tohoku.ac.jp
https://orcid.org/0000-0002-8823-2361
https://orcid.org/0000-0003-2101-1625
https://creativecommons.org/licenses/by/4.0/deed.en

1.1. Algorithmic Design and Implementation

Our library, called JSIM& <& Z Explainer, implements an efficient and explainable concept similarity
measure within the & £ 7 fragment of Description Logic. The core algorithm is designed in accordance
with the neuro-symbolic framework proposed in the prior theoretical works [3, 4], with a practical
focus on scalability, modularity, and extensibility.

1.1.1. Supported Ontology Type

The current implementation supports & £ # ontologies with unfoldable TBoxes. This ensures that no
cyclic definitions exist, making the ontology amenable to tree-based structural analysis.

1.1.2. Embedding Model Independence

The similarity computation module is designed to be agnostic to the choice of embedding models. Any
word embedding model—static or contextualized, domain-specific or general-purpose—can be used as
long as it provides a mapping from concept labels (strings) to vectors in a real-valued vector space.

1.1.3. Algorithm and API’s Development

Definition 1. [Homomorphism Degree subject to Embedding [3]] Let CNP" and RN be a set of primitive
concept names and role names in an ontology, respectively. Also, let T¥Z % be a set of all € L I description
trees, & be a set of (possibly empty) pre-trained embeddings, and M - CNPTURN > & bea mapping.
The homomorphism degree subject to & (denoted by hd,) is a function hd, : TEZ# x TEZL¥ 5 [0,1]
defined inductively as follows:

hde(Fc, Ip) = p x p-hd (T, Fp) + (1 — p) x e-set-hd(&c, &p) (1)
where 1 := | g!f% L also, F, & denotes a set of primitive concepts and a set of existentials, respectively, on
tuée
(unfolded) description tree I¢;
1 ifP =0
0 ifP+0
p_hde(‘@cy ‘%) = and % =Q (2)
Ag(}c gé%{ge(A’B)} otherwise
|l ’
ifA=B
5.4, 5) = i ®)
max{cos(.# (A), 4 (B)), 0} otherwise,
where cos(:, -) represents the cosine similarity,
e-set-hd (&, &p) :=
1 if&c=0
0 lfgc =@ (4)
and Ep =@

Y. max{e-hd(3r.X.¢))}
I XeE €D

|l

otherwise,



where € is an existential; and

e-hd(3r.X,3s.Y) := y(r,s) x v + (1 —v) x hd(Tx, Ty)) (5)
where 0 <v < 1; and
1 ifr=s
Ye(r,s) = r%l% S,né%is{COS(/%(r’),/%(S’)),O} . (6)
L ] otherwise,

where R,, R denotes a set of all r’s super roles and a set of all s’s super roles, respectively. Note that a set
of allr’s super roles, denoted by R,, is defined as B, ={s € RN |r C* s} and, r C* sifr=sorr;Cr, €T
where 1 <i<n,r; =r,r, =s, and * is a transitive closure.

From the above definition, we describe the main procedure of our similarity procedure implemented
in our library here. Given a target ontology and two concepts whose similarity is to be computed, the
similarity procedure in our library proceeds with respect to the following main steps:

1. Unfolding the TBox: The ontology is preprocessed by replacing defined concept names with
their definitions recursively until all concept expressions are written in terms of only primitive
concepts (i.e., concept names that are not defined in the TBox).

2. Description Tree Construction: Fach unfolded concept is translated into a description tree, a
syntactic representation that reflects the hierarchical and conjunctive structure of the concept
expression based on &% Z constructors.

3. Structural Comparison: A syntactic comparison is performed between the two description
trees as described in Definition 1. The algorithm recursively computes a similarity degree by
combining structural correspondence with lexical proximity (i.e. the used embeddings).

4. Embedding-based Similarity: For each concept or role label encountered, the algorithm uses
the chosen embedding model (cf. Mapping . in Definition 1) to compute a cosine similarity
between matching nodes or edges. This allows for approximate matching even when labels differ
lexically but are semantically related.

5. Similarity Aggregation: The final score is obtained by aggregating the local similarity scores
of the matched substructures, weighted appropriately based on tree depth and logical operators.

The algorithm has been mathematically proven to run in polynomial time with respect to the size of
the ontology and the input concept descriptions. Termination is guaranteed due to the finite nature of
the unfolding and tree construction processes, as well as the bounded number of structural comparisons
during similarity computation.

2. Core API Design

The core APIs are designed to facilitate our concept similarity computation, explanation generation,
and easy integration with OWL ontologies and external embedding models. The library is available
online at: https://github.com/realearn-people/sim-elh-explainer-jar

Below is an overview of the key functions provided in our development:


https://github.com/realearn-people/sim-elh-explainer-jar

1. Instantiation of JSIM& < # Explainer: The first step is to instantiate a SimExplainer object
for loading the input ontology into a targeted Java project. Following [3, 4], all primitive concept
names and role names could be also pre-configured in a separate setting, called Preference Profile
[4]. In addition, our API supports two kinds of ontology file extensions: .owl and .krss.

2. Concept Name Retrieval: This function allows to retrieve all concept names from the ontology.

3. Similarity Measure: This function measures similarity between two concepts.

4. Description Tree Retrieval: This function returns a description tree of the given concept. This
can be represented in JSON for machine readability and in ASCII for human readability.

5. Explanation Retrieval: This function returns a 4-tuple representing the explanation of detected
similarity consisting of (1) the homomorphism degree from a concept to another concept, (2) a
list of primitive concept pairs that contribute to the similarity score, with each pair consisting of
one concept from the first input and one from the second, (3) a list of existential concept pairs
contributing to the similarity score, where each pair consists of one existential concept from
each of the two input concepts, and (4) an applied embedding map in which each key is a pair of
existential or primitive concepts—one from each input concept—that contributes to the overall
similarity score. For the 4th one, the corresponding value is a set of pairs, where each pair
represents a similarity found within the embedding space between roles or primitive concepts.

We provide the output of explanation retrieval in both JSON and ASCII for flexibility of use of
the library. Note that the final similarity score is derived by averaging the homomorphism degrees
(Definition 1) from both the forward and backward directions of the respected description trees.

# Insight Comparison Concept Pairs Similarity
Score
1 2 concepts under the same class Son, SonInLaw* 0.97
Son, Uncle 0.897
2 2 concepts under different classes but same level SonInLaw, DaughterInLaw™* 0.8
SonInLaw, Daughter 0.68
3 2 concepts that are direct class-subclass ‘Woman, Aunt 0.9
2 concepts that are not direct class-subclass Female, GrandFather 0.53

Table 1
Insight analysis on the experiments based on the family ontology, where * denotes that they yield higher
scores due to more numbers of shared features.

3. Experiments and Conclusions

We evaluated our similarity framework using SNOMED CT and the family ontology [5]. We aimed
to validate that concepts sharing more features should yield a higher similarity degree. To manage
complexity of SNOMED CT, we focused on two top-level categories: Clinical Finding and Procedure.
We randomly sampled 206 concepts (0.5%) from each category, forming three test sets: C; x Cy, Cy x G,
and C; x Cy, where C; and C, represent the Clinical Finding and Procedure samples, respectively. Our
findings confirmed that concept pairs from the same category consistently received higher similarity scores
than cross-category pairs, in line with expectations based on ontological structure and subsumption. Table
1 shows some insights for the chosen pairs in the family ontology. In the future, we plan to validate on
other aspects such as usability. This could be done by involving users or developers to gather feedback.



Declaration of Generative Al and Al-assisted Technologies

The authors did not use any generative Al and Al-assisted technologies for writing the article. The
authors thus take full responsibility for the content of the publication.

References

[1] F. Z. Smaili, X. Gao, R. Hoehndorf, Opa2vec: combining formal and informal content of biomedical
ontologies to improve similarity-based prediction, Bioinformatics 35 (2019) 2133-2140.

[2] L. Zhao, J. Wang, L. Cheng, C. Wang, Ontosem: an ontology semantic representation methodology
for biomedical domain, in: 2020 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), IEEE, 2020, pp. 523-527.

[3] T.Racharak, On approximation of concept similarity measure in description logic ELH with pre-
trained word embedding, IEEE Access 9 (2021) 61429-61443. URL: https://doi.org/10.1109/ACCESS.
2021.3073730. doi:10.1109/ACCESS.2021.3073730.

[4] T. Racharak, B. Suntisrivaraporn, S. Tojo, Personalizing a concept similarity measure in the
description logic ELH with preference profile, Comput. Informatics 37 (2018) 581-613. URL:
https://doi.org/10.4149/cai_2018_3_581. doi:10.4149/CATI\ 2018\ 3\ 581.

[5] R. Stevens, M. Stevens, A family history knowledge base using owl 2., in: Owled, volume 432, 2008.


https://doi.org/10.1109/ACCESS.2021.3073730
https://doi.org/10.1109/ACCESS.2021.3073730
http://dx.doi.org/10.1109/ACCESS.2021.3073730
https://doi.org/10.4149/cai_2018_3_581
http://dx.doi.org/10.4149/CAI_2018_3_581

	1 Introduction
	1.1 Algorithmic Design and Implementation
	1.1.1 Supported Ontology Type
	1.1.2 Embedding Model Independence
	1.1.3 Algorithm and API's Development


	2 Core API Design
	3 Experiments and Conclusions

