
Learned Indexes for Efficient Querying on Knowledge
Graphs
Gaurav Dawra, Aanchal Gupta, Nandika Jain∗, Yogender Kumar, Jishnu Raj Parashar,
Bapi Chatterjee and Raghava Mutharaju

IIIT-Delhi, India

Abstract
There are several real-world Knowledge Graphs that are very large in size. Running SPARQL queries over such
large graphs is time consuming. We propose improving the query performance over Knowledge Graphs by
replacing traditional indices with learned indices. Learned indices exploit the underlying data distribution to
enable more efficient query processing, leading to reduced storage overhead and faster runtime performance.
Our evaluation on two Knowledge Graphs demonstrates promising gains, highlighting the potential of learned
indexing as a direction for further research.

Keywords
Knowledge Graph stores, Learned Index, Query processing, RDF Stores, SPARQL, Knowledge Graph Management

1. Introduction

Knowledge Graphs (KGs) [1] are graph-based data models that capture the knowledge of a domain in
the form of entities and the relations between them. The semantics associated with the entities and
relations are generally defined in an ontology [2]. KGs are used across several different applications
and domains to integrate and extract value from the data [3]. The publicly available KGs such as
Wikidata [4], DBpedia [5], and YAGO [6], are quite large in size, with billions of nodes and edges. In
our work, we use the Resource Description Framework (RDF)1 representation for KGs. One of the
popular query languages for KGs is aW3C standard named SPARQL. A SPARQL query typically involves
several joins [7]. When such queries are applied over large KGs, it results in a huge latency. Since
the inception of SPARQL, several optimization and fine-tuning techniques were developed [8, 9, 10].
However, the existing techniques do not consider the distribution of the underlying data, which has
a direct impact on the performance of SPARQL query execution. In this work, we explore the use of
machine learning techniques to improve the performance of queries. More specifically, we employ a
learned index [11, 12, 13] – a hierarchical indexing technique that utilizes inference of shallow machine
learning models at every level of hierarchy to guide the queries. A learned index is created based on
the data distribution, which we use to replace a regular index in a KG store. Our evaluation of two KGs
provides promising results. The code and SPARQL queries to evaluate our approach are available at
https://github.com/bapichatterjee/TripleBit-SplineIndex.

2. Related Work

This section discusses relevant existing systems of learned indexes and RDF databases for efficient
storage and retrieval.

ISWC 2025 Companion Volume, November 2–6, 2025, Nara, Japan
∗Corresponding author.
Envelope-Open gaurav19039@iiitd.ac.in (G. Dawra); aanchal21224@iiitd.ac.in (A. Gupta); nandika19064@iiitd.ac.in (N. Jain);
yogender21505@iiitd.ac.in (Y. Kumar); jishnu19048@iiitd.ac.in (J. R. Parashar); bapi@iiitd.ac.in (B. Chatterjee);
raghava.mutharaju@iiitd.ac.in (R. Mutharaju)
Orcid 0009-0000-8033-4235 (N. Jain); 0000-0002-2742-4028 (B. Chatterjee); 0000-0003-2421-3935 (R. Mutharaju)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1https://www.w3.org/TR/rdf11-primer/

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/bapichatterjee/TripleBit-SplineIndex
mailto:gaurav19039@iiitd.ac.in
mailto:aanchal21224@iiitd.ac.in
mailto:nandika19064@iiitd.ac.in
mailto:yogender21505@iiitd.ac.in
mailto:jishnu19048@iiitd.ac.in
mailto:bapi@iiitd.ac.in
mailto:raghava.mutharaju@iiitd.ac.in
https://orcid.org/0009-0000-8033-4235
https://orcid.org/0000-0002-2742-4028
https://orcid.org/0000-0003-2421-3935
https://creativecommons.org/licenses/by/4.0/deed.en
https://www.w3.org/TR/rdf11-primer/


Learned indexes are designed to implement tasks typically performed by conventional data structures,
such as search, insert, and delete, using machine learning models. Starting from the work of Kipf et al.
[14], these models got extended to indexing multidimensional [15, 16] and spatial data [17]. These
can be quite powerful and often more efficient in terms of query time enabled by lightweight machine
learning inference, particularly with growing dataset size [18]. Additionally, memory consumption
compared to classic approaches is typically an order of magnitude smaller [11]. Beyond hierarchical
indexes, the technique of machine learning inference augmentation was also applied to bloom filters
[19], and hash tables [20].

In this line of work, the RadixSpline (RS) [14] index is a single-pass learned index designed for
sorted integer keys, capable of handling both equality and range predicate queries. It operates by
selecting discrete spline points over the dataset and constructing a radix table to index these points.
This combination allows the system to locate neighboring spline points relative to a lookup key, followed
by a binary search to determine the exact key position using spline linear interpolation. RadixSpline
has demonstrated significantly faster performance compared to traditional indexing methods.

Recently, the learned indexes were also combined with concurrent queries to take advantage of
powerful multi-core machines [21, 22]. Such learned data structures provide significant performance
improvements over traditional methods by fitting the exact distribution of the data or access patterns
of a particular application.

In traditional RDF triple stores, such as Apache Jena [23], TripleBit [24], and RDF-3X [25], indexing
is critical for efficient query execution. The general approach involves several components such as a
node table, triple and quad indexes, and a prefix table. Apache Jena’s [23] TDB architecture includes the
node table, triple and quad indexes, and the prefix table. The node table maps Nodes to NodeIDs using
a B+ Tree, while NodeID to Node mapping utilizes a sequential access file. Triple and Quad indices
store triples and 4-tuples, and the prefix table handles presentation and serialization. Although robust,
Jena’s indexing mechanism can be further optimized with machine learning techniques.

TripleBit [24] is a fast and compact RDF data management system designed for developmental use. It
represents RDF triples as a 2D-bit matrix, called the triple matrix, where columns represent the triples
and rows represent the objects and subjects. The columns are lexicographically sorted by predicates
and partitioned into buckets. The system employs variable-size encoding for subject/object IDs and
uses column compression to represent each triple within the matrix. Inside each bucket, triples are
further divided into fixed-size chunks, and TripleBit creates an index structure for these chunks within
each predicate bucket, enhancing efficiency and compactness.

RDF-3X [25] is known for its sophisticated indexing and query optimization strategies, designed to
handle specific types of queries efficiently. It employs various indexes to support rapid query execution.
We noticed that none of the mainstream triple stores use machine learning for indexing. We aim to fill
that gap by using a learned index in an RDF store.

3. Architecture

We chose TripleBit for its straightforward implementation and focus on specific query types, making
it ideal for experimental development. RadixSpline, a single-pass learned index, was selected for
its ability to efficiently model data distributions, offering promising build times and query latencies.
Unlike mainstream triple stores like Apache Jena, Virtuoso, and RDF-3X, TripleBit’s simpler codebase
allows easier modification. RadixSpline’s compatibility with C++ aligns well with TripleBit, facilitating
seamless integration and leveraging machine learning for enhanced indexing performance.

3.1. Challenges

The objective is to replace the indexing mechanism of TripleBit with a learned index created using
RadixSpline. TripleBit organizes triples into predicate-based buckets, which are further divided into
fixed-size chunks. While its native LineHashIndex is specifically designed to operate on this structure,



RadixSpline requires sorted numeric keys. This structural mismatch gave rise to the following challenges,
among others.

Key representation: To integrate RadixSpline with TripleBit, these subject–object or object–subject
pairs had to be translated into a consistent, sortable numeric key format compatible with the learned
index.

Chunk-level granularity: We need to adapt the spline construction process to operate on a chunk
while still leveraging the global distributional characteristics as TripleBit constructs indexes at the
chunk level.

3.2. Integration

To address these, we created a wrapper class, SplineIndex, to bridge the TripleBit interface and the
RadixSpline interface (Figure 1).

Data transformation: We introduced a numeric encoding of subject–object or object–subject pairs
to produce keys compatible with RadixSpline’s requirements.

Chunk-wise spline construction: The SplineIndex::buildIndex() function first gathers and sorts the
subject-object pairs within each chunk, then invokes the rs::MultiMap implementation of RadixSpline to
create a spline index with error bounds tuned to the chunk size. The spline is constructed by modeling
key positions within a bounded error, selecting representative data points, and interpolating between
spline points. A radix table is then built by partitioning the sorted spline points according to their r-bit
prefixes. During lookups, the r-bit prefix of the query key is used to identify the relevant spline region,
after which binary and linear searches refine the prediction to locate the key within the specified error
bound. This facilitates the creation of localized learned indices that still capture global distributional
patterns.

Parameter tuning: RadixSpline requires tuning on parameters such as the number of spline points
and radix table bits. We experimented with different error tolerance (ε) and radix bits (r) to balance
query latency and memory usage. Larger ε reduces index size by reducing the number of spline points
at the cost of longer binary searches. Radix bits (r) control the granularity of the radix table: higher
r values create finer partitions, enabling faster access to the relevant spline segment but increasing
memory usage.
Serialization: Additionally, we integrated custom serialization and deserialization functions for

RadixSpline into TripleBit, thus effectively replacing its native index structure with RadixSpline.

3.3. Query Execution Benefits

This integration improves lookup efficiency for subject–object mappings within chunks, thereby reduc-
ing the size of intermediate results during SPARQL joins. Equality queries gain from the tighter error
bounds of spline interpolation, while range queries benefit from RadixSpline’s interpolation model,
which allows large portions of data to be skipped.

4. Evaluation

In this section, we present the results of benchmarking our approach against Apache Jena, TripleBit, and
RDF3x with DBLP2 and SP2Bench [26] benchmarks. We use two types of SPARQL queries – queries with
single selection triple patterns and queries with join triple patterns. We set the RadixSpline parameters,
error tolerance (ε) and radix bits (r), by balancing the trade-off between index size and query latency. In
our evaluations, we found ε = 32 and r = 18 to provide the best balance between memory footprint and
query performance.

2https://dblp.org/

https://dblp.org/


Figure 1: The storage schema of our learned triple store.

4.1. Performance on DBLP Dataset

DBLP (Digital Bibliography and Library Project) is a comprehensive online bibliography of computer
science literature. It is a commonly used benchmark dataset for evaluating the performance of database
management systems, particularly those that are designed to handle large amounts of data efficiently.
Performance is typically measured in terms of the time it takes for the system to execute the queries
and return the results.

Although the RDF schema and triples of DBLP are available, the SPARQL queries are not public.
We used 350 million triples from the DBLP dataset with five queries listed at https://github.com/
bapichatterjee/TripleBit-SplineIndex/blob/master/SPARQL-Queries.txt. Table 1 shows the results after
benchmarking DBLP on TripleBit with SplineIndex (TBSP), Apache Jena, TripleBit, and RDF3x.

Stores Q1 Q2 Q3 Q4 Q5

TBSP 0.0605 0.0057 0 0.0001 4.1426
Apache Jena 11.2515 0.1990 0 0.1130 10.9165
TripleBit 0.068 0.005784 0 0.000137 4.2223
RDF3X 1.26725 0.00225 0 0.00339 4.27625

Table 1
Performance of triple stores (time in seconds) on 350M triples from DBLP. TBSP stands for TripleBitWithSplineIn-
dex. The best runtimes are in bold.

4.2. Performance on SP2Bench

The SP2Bench benchmark consists of a set of queries that cover a variety of query types and complexities,
ranging from simple triple pattern matching to complex queries with subqueries and aggregates. The
queries are designed to test different aspects of a system’s performance, such as query processing time,
query planning time, and data loading time.

We used 100 million triples generated using SP2Bench on five queries listed at https://github.com/
bapichatterjee/TripleBit-SplineIndex/blob/master/SPARQL-Queries.txt. Table 2 shows the results after
benchmarking SP2Bench on TripleBit with SplineIndex (TBSP), Apache Jena, TripleBit, and RDF3x.

https://github.com/bapichatterjee/TripleBit-SplineIndex/blob/master/SPARQL-Queries.txt
https://github.com/bapichatterjee/TripleBit-SplineIndex/blob/master/SPARQL-Queries.txt
https://github.com/bapichatterjee/TripleBit-SplineIndex/blob/master/SPARQL-Queries.txt
https://github.com/bapichatterjee/TripleBit-SplineIndex/blob/master/SPARQL-Queries.txt


Stores Q1 Q2 Q3 Q4 Q5

TBSP 0.0001 53.73 52.55 268.3 0.0041
Apache Jena 0.12 1210.37 102.38 498.67 0.3247
TripleBit 0.00021 61.07 68.28 277.30 0.0870
RDF3X 0.0027 385.26 68.20 347.0 0.0012

Table 2
Performance of triple stores (time in seconds) on 100M triples from SP2Bench. TBSP stands for TripleBitWith-
SplineIndex. The best runtimes are in bold.

From Tables 1, and 2, we can observe that TripleBitWithSplineIndex (TBSP) performs better than
the other three triple stores, including TripleBit with the standard indexing scheme. This shows the
potential of using a learned index for triple stores.

5. Conclusion and Future Work

There are several applications of Knowledge Graphs across different domains. Most often, Knowledge
Graphs are very large in size. Querying over such large Knowledge Graphs is time consuming. Although
several techniques for optimization exist, to the best of our knowledge, we are the first to explore
the use of learned indexes for KG stores. Our first attempt in this work to integrate learned indexes
(RadixSpline) with RDF stores is encouraging. We addressed the challenges arising in replacing the
classical indexes in the pipeline with learned indexes. The code for our learned index based triple store
is available at https://github.com/bapichatterjee/TripleBit-SplineIndex.

As a next step, we plan to use more recent and advanced learned index structures for triple stores.
The literature on learned indexes has been enriched by the benchmarks at different points. For example,
see [27], [28], and [13]. The existing benchmarks provide insights to efficacy of the learned indexes
for standard query tasks for real numbers. Given that RDF queries involve multiple and potentially
repeated join operations, it is a natural extension of this work to benchmark the different learned
indexes such as ALEX [29], FITing-tree [30], the PGM-index [31], etc. for the task of SPARQL queries
by including these indices in our architecture.

Building on the success of indexes for one-dimensional real-number, subsequent works extended
learned indexes to domain specific queries such as multidimensional indexes for correlated and skewed
data [32], learned indexes for KNN queries [33], indexes for string queries [34], and learned index for
large-scale dense passage retrieval [35]. It is imperative to explore the efficient design of learned indexes
for RDF stores.

6. Acknowledgements

This work was partially supported by the Infosys Center for AI (CAI), IIIT-Delhi, India.

7. Declaration on Generative AI

The authors acknowledge the use of Generative AI tools (ChatGPT) to assist in text refinement and
language editing. All generated content was critically assessed and validated by the authors. The final
wording reflects the author’s own judgment.

References

[1] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G. D. Melo, C. Gutierrez, S. Kirrane, J. E. L. Gayo,
R. Navigli, S. Neumaier, A.-C. N. Ngomo, A. Polleres, S. M. Rashid, A. Rula, L. Schmelzeisen,

https://github.com/bapichatterjee/TripleBit-SplineIndex


J. Sequeda, S. Staab, A. Zimmermann, Knowledge graphs, ACM Computing Surveys 54 (2021).
URL: https://doi.org/10.1145/3447772. doi:10.1145/3447772.

[2] N. Guarino, D. Oberle, S. Staab, What Is an Ontology?, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009, pp. 1–17. URL: https://doi.org/10.1007/978-3-540-92673-3_0. doi:10.1007/
978-3-540-92673-3_0.

[3] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, J. Taylor, Industry-scale knowledge graphs:
lessons and challenges, Communications of the ACM 62 (2019) 36–43. URL: https://doi.org/10.
1145/3331166. doi:10.1145/3331166.

[4] D. Vrandečić, L. Pintscher, M. Krötzsch, Wikidata: The making of, in: Companion Proceedings of
the ACM Web Conference 2023, WWW ’23 Companion, Association for Computing Machinery,
New York, NY, USA, 2023, p. 615–624. URL: https://doi.org/10.1145/3543873.3585579. doi:10.1145/
3543873.3585579.

[5] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey,
P. van Kleef, S. Auer, C. Bizer, Dbpedia - A large-scale, multilingual knowledge base extracted
from wikipedia, Semantic Web 6 (2015) 167–195. URL: https://doi.org/10.3233/SW-140134. doi:10.
3233/SW-140134.

[6] T. Rebele, F. Suchanek, J. Hoffart, J. Biega, E. Kuzey, G. Weikum, Yago: A multilingual knowledge
base from wikipedia, wordnet, and geonames, in: The Semantic Web – ISWC 2016: 15th Interna-
tional Semantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II, Springer-
Verlag, Berlin, Heidelberg, 2016, p. 177–185. URL: https://doi.org/10.1007/978-3-319-46547-0_19.
doi:10.1007/978-3-319-46547-0_19.

[7] A. Bonifati, W.Martens, T. Timm, An analytical study of large SPARQL query logs, VLDB J. 29 (2020)
655–679. URL: https://doi.org/10.1007/s00778-019-00558-9. doi:10.1007/S00778-019-00558-9.

[8] M. Schmidt, M. Meier, G. Lausen, Foundations of sparql query optimization, in: Proceedings
of the 13th International Conference on Database Theory, ICDT ’10, Association for Computing
Machinery, New York, NY, USA, 2010, p. 4–33. URL: https://doi.org/10.1145/1804669.1804675.
doi:10.1145/1804669.1804675.

[9] A. Gubichev, T. Neumann, Exploiting the query structure for efficient join ordering in SPARQL
queries, in: S. Amer-Yahia, V. Christophides, A. Kementsietsidis, M. N. Garofalakis, S. Idreos,
V. Leroy (Eds.), Proceedings of the 17th International Conference on Extending Database Tech-
nology, EDBT 2014, Athens, Greece, March 24-28, 2014, OpenProceedings.org, 2014, pp. 439–450.
URL: https://doi.org/10.5441/002/edbt.2014.40. doi:10.5441/002/EDBT.2014.40.

[10] K. Rabbani, M. Lissandrini, K. Hose, Optimizing SPARQL queries using shape statistics, in:
Y. Velegrakis, D. Zeinalipour-Yazti, P. K. Chrysanthis, F. Guerra (Eds.), Proceedings of the 24th
International Conference on Extending Database Technology, EDBT 2021, Nicosia, Cyprus, March
23 - 26, 2021, OpenProceedings.org, 2021, pp. 505–510. URL: https://doi.org/10.5441/002/edbt.2021.
59. doi:10.5441/002/EDBT.2021.59.

[11] T. Kraska, A. Beutel, E. H. Chi, J. Dean, N. Polyzotis, The case for learned index structures, in:
Proceedings of the 2018 international conference on management of data, 2018, pp. 489–504.

[12] P. Ferragina, F. Lillo, G. Vinciguerra, Why are learned indexes so effective?, in: International
Conference on Machine Learning, PMLR, 2020, pp. 3123–3132.

[13] Z. Sun, X. Zhou, G. Li, Learned index: A comprehensive experimental evaluation, Proceedings of
the VLDB Endowment 16 (2023) 1992–2004.

[14] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, T. Neumann, Radixspline: A
single-pass learned index (2020).

[15] A. Davitkova, E. Milchevski, S. Michel, The ml-index: A multidimensional, learned index for point,
range, and nearest-neighbor queries., in: EDBT, 2020, pp. 407–410.

[16] Q. Liu, M. Li, Y. Zeng, Y. Shen, L. Chen, How good are multi-dimensional learned indexes? an
experimental survey, The VLDB Journal 34 (2025) 17.

[17] P. Li, H. Lu, Q. Zheng, L. Yang, G. Pan, Lisa: A learned index structure for spatial data, in:
Proceedings of the 2020 ACM SIGMOD international conference on management of data, 2020, pp.
2119–2133.

https://doi.org/10.1145/3447772
http://dx.doi.org/10.1145/3447772
https://doi.org/10.1007/978-3-540-92673-3_0
http://dx.doi.org/10.1007/978-3-540-92673-3_0
http://dx.doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1145/3331166
https://doi.org/10.1145/3331166
http://dx.doi.org/10.1145/3331166
https://doi.org/10.1145/3543873.3585579
http://dx.doi.org/10.1145/3543873.3585579
http://dx.doi.org/10.1145/3543873.3585579
https://doi.org/10.3233/SW-140134
http://dx.doi.org/10.3233/SW-140134
http://dx.doi.org/10.3233/SW-140134
https://doi.org/10.1007/978-3-319-46547-0_19
http://dx.doi.org/10.1007/978-3-319-46547-0_19
https://doi.org/10.1007/s00778-019-00558-9
http://dx.doi.org/10.1007/S00778-019-00558-9
https://doi.org/10.1145/1804669.1804675
http://dx.doi.org/10.1145/1804669.1804675
https://doi.org/10.5441/002/edbt.2014.40
http://dx.doi.org/10.5441/002/EDBT.2014.40
https://doi.org/10.5441/002/edbt.2021.59
https://doi.org/10.5441/002/edbt.2021.59
http://dx.doi.org/10.5441/002/EDBT.2021.59


[18] P. Ferragina, F. Lillo, G. Vinciguerra, On the performance of learned data structures, Theoretical
Computer Science 871 (2021) 107–120.

[19] M. Mitzenmacher, A model for learned bloom filters, and optimizing by sandwiching, in: Proceed-
ings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18,
Curran Associates Inc., Red Hook, NY, USA, 2018, p. 462–471.

[20] I. Sabek, K. Vaidya, D. Horn, A. Kipf, M. Mitzenmacher, T. Kraska, Can learned models replace
hash functions?, Proceedings of the VLDB Endowment 16 (2022) 532–545. URL: https://doi.org/10.
14778/3570690.3570702.

[21] C. Tang, Y. Wang, Z. Dong, G. Hu, Z. Wang, M. Wang, H. Chen, Xindex: a scalable learned index
for multicore data storage, in: Proceedings of the 25th ACM SIGPLAN symposium on principles
and practice of parallel programming, 2020, pp. 308–320.

[22] G. Bhardwaj, B. Chatterjee, A. Sharma, S. Peri, S. Nayak, Kanva: A lock-free learned search data
structure, in: Proceedings of the 53rd International Conference on Parallel Processing, 2024, pp.
252–261.

[23] A. S. Foundation, Apache jena (2021). URL: https://jena.apache.org/.
[24] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, L. Liu, Triplebit: A fast and compact system for large scale

rdf data, Proceedings of the VLDB Endowment 6 (2013) 517–528. doi:10.14778/2536349.2536352.
[25] T. Neumann, G. Weikum, Rdf3x: a risc-style engine for rdf, Proceedings of The Vldb Endowment -

PVLDB 1 (2008) 647–659. doi:10.14778/1453856.1453927.
[26] M. Schmidt, T. Hornung, G. Lausen, C. Pinkel, 𝑆𝑃2Bench: A sparql performance benchmark, in:

IEEE 25th International Conference on Data Engineering, 2009, pp. 222–233. doi:10.1109/ICDE.
2009.28.

[27] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, T. Neumann, Sosd: A benchmark
for learned indexes, arXiv preprint arXiv:1911.13014 (2019).

[28] L. Bindschaedler, A. Kipf, T. Kraska, R. Marcus, U. F. Minhas, Towards a benchmark for learned
systems, in: 2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW),
IEEE, 2021, pp. 127–133.

[29] J. Ding, U. F. Minhas, J. Yu, C.Wang, J. Do, Y. Li, H. Zhang, B. Chandramouli, J. Gehrke, D. Kossmann,
et al., Alex: an updatable adaptive learned index, in: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 969–984.

[30] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, T. Kraska, Fiting-tree: A data-aware index
structure, in: Proceedings of the 2019 international conference on management of data, 2019, pp.
1189–1206.

[31] P. Ferragina, G. Vinciguerra, The pgm-index: a fully-dynamic compressed learned index with
provable worst-case bounds, Proceedings of the VLDB Endowment 13 (2020) 1162–1175.

[32] J. Ding, V. Nathan, M. Alizadeh, T. Kraska, Tsunami: A learned multi-dimensional index for
correlated data and skewed workloads, arXiv preprint arXiv:2006.13282 (2020).

[33] Y. Peng, Lk-index: A learned index for knn queries, IEEE Access (2024).
[34] P. Ferragina, M. Frasca, G. C. Marinò, G. Vinciguerra, On nonlinear learned string indexing, IEEE

Access (2023).
[35] Y. Wang, H. Ma, D. Z. Wang, Lider: an efficient high-dimensional learned index for large-scale

dense passage retrieval, Proceedings of the VLDB Endowment 16 (2022) 154–166.

https://doi.org/10.14778/3570690.3570702
https://doi.org/10.14778/3570690.3570702
https://jena.apache.org/
http://dx.doi.org/10.14778/2536349.2536352
http://dx.doi.org/10.14778/1453856.1453927
http://dx.doi.org/10.1109/ICDE.2009.28
http://dx.doi.org/10.1109/ICDE.2009.28

	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Challenges
	3.2 Integration
	3.3 Query Execution Benefits

	4 Evaluation
	4.1 Performance on DBLP Dataset
	4.2 Performance on SP2Bench

	5 Conclusion and Future Work
	6 Acknowledgements
	7 Declaration on Generative AI

