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Abstract

Large language models (LLMs) achieve strong performance in various language tasks, yet their logical inference
abilities remain limited. LLMs often rely on pre-trained knowledge rather than explicit inference. Their inference
capabilities in ontology languages like RDFS also remain underexplored. This study evaluates LLMs’ inference
abilities using RDFS entailment rules with two knowledge datasets: real-world data from Linked Open Data
and counterfactual data created by systematically altering real-world facts. We propose a novel evaluation
methodology assessing LLM outputs. To analyze inference behavior under different conditions, we design a
three-level task framework varying rule presentation methods for identical inference tasks. Results show high
accuracy on real-world datasets. LLMs sometimes infer missing premises using pre-trained knowledge, suggesting
potential for incompletely structured environments. However, accuracy declines with counterfactual datasets
and when shifting from pre-combined to multiple separate rules. Performance further drops when models must
select appropriate rules from predefined subsets. These findings highlight both strengths and limitations of LLMs
in structured, rule-based inference within ontology-driven systems.
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1. Introduction

In recent years, large language models (LLMs) have demonstrated substantial capabilities across natural
language processing tasks, yet their capacity for logical inference remains under scrutiny [1]. LLMs
tend to leverage pretrained knowledge rather than explicit logical inference, leading to evaluation
studies under counterfactual conditions [2, 5]. While existing assessments using RDFS inference rules
have relied on natural language-based methods, such approaches present challenges for rigorous
verification [3]. To address this, we propose a novel evaluation framework that rigorously assesses
LLM logical inference abilities using RDFS entailment rules. Our framework assesses LLM inference
capabilities through real-world and counterfactual knowledge datasets, different rule presentation
methods, and multi-rule combinations, using RDFS triples for precise, quantitative evaluation.

2. Related Work

Wu et al. [3] investigated whether pre-trained language models can store, understand, and utilize
ontological knowledge for inference. They evaluated inference tasks based on six RDFS entailment
rules using DBpedia [6] and Wikidata [7] data. However, significant limitations in inference accuracy
for complex inference were revealed. Ozeki et al. [5] assessed syllogistic inference abilities of LLMs
and showed performance decline in tasks involving belief-incongruent (counterfactual) premises and
conclusions. Morishita et al. [2] assessed inference accuracy when constants and predicates were
replaced with randomly assigned vocabulary, testing whether LLMs could apply logical rules without
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Table 1
Selected RDFS Entailment Rules

Rule Premise Conclusion
rdfs2 <i, rdfs:domain, X> <a, rdf:type, X>
<a, i, b>
rdfs3 <i, rdfs:range, X> <b, rdf:type, X>
<a, i, b>
rdfs5 <i, rdfs:subPropertyof, j> <i, rdfs:subPropertyOf, k>
<j, rdfs:subPropertyof, k>
rdfs7 <i, rdfs:subPropertyof, j> <a, j, b>
<a, i, b>
rdfs9 <X, rdfs:subClassOf, Y> <a, rdf:type, Y>

<a, rdf:type, X>

rdfsi11 <X, rdfs:subClassOf, Y> <X, rdfs:subClassOf, Z>
<Y, rdfs:subClassOf, Z>

relying on pre-trained knowledge. The present study is similar to Wu et al. in using RDFS entailment
rules to evaluate LLMs, but employs RDFS triples as output format and evaluates inference tasks
involving multiple rules, enabling more rigorous and quantitatively precise assessment.

3. Methodology

3.1. RDFS Entailment Rules

We select six RDFS entailment rules that are frequently used in practical Semantic Web settings (Table 1).
These rules are well-suited for assessing LLM inference from a practical perspective. We further define
13 additional composite rules by combining two rules (rdfs2+3, rdfs2+7, rdfs2+9, rdfs3+7, rdfs3+9,
rdfs5+7, rdfs9+11) and three rules (rdfs2+3+7, rdfs2+3+9, rdfs2+5+7, rdfs2+9+11, rdfs3+5+7, rdfs3+9+11),
yielding 19 rules in total to evaluate inference patterns of varying complexity.

3.2. Evaluation Datasets

To systematically evaluate LLM inference capabilities, we conduct evaluations under diverse dataset
conditions.

Real-world knowledge dataset (RK): Constructed from Linked Open Data sources including
DBpedia [6], Wikidata [7], and Linked Open Vocabularies [8].

Counterfactual datasets: Eight variants created primarily by systematically modifying real-world
knowledge data:

+ S: Swaps subjects/objects, property domains/ranges, and reorders class/property hierarchies
« NA/NR: Adds “not” prefix to all/random classes and properties

+ SNA/SNR: Combines S with NA/NR modifications

+ GS: Shuflles all resources ensuring none remain in original positions

+ GSC: Applies GS then renames resources using DBpedia’s type-appropriate naming conventions
(PascalCase for classes, Upper_Snake_Case for instances, camelCase for properties)

« RND: Creates new triples using randomly assigned DBpedia vocabularies by resource type [2]
Random symbolic dataset (NS): Triples formed from 8-character alphanumeric strings with no
semantic meaning,.
3.3. Task Levels and Prompt Design

We define three task levels for a common inference task by varying how the inference rules are presented:
The prompts provide inference rules and premise knowledge, instructing LLMs to perform inference



Table 2
Example of Composite Rule rdfs2_3_7

Rule Premise Conclusion
rdfs2_3_7 <i, rdfs:domain, X> <a, rdf:type, X>
<i, rdfs:range, Y> <b, rdf:type, Y>
<i, rdfs:subPropertyof, j> <a, j, b>
<a, i, b>

based solely on the given premises. Output formats are strictly specified to ensure consistent evaluation.
Each task level using an example that combines rdfs2, rdfs3, and rdfs7 as the target inference rules
are shown in the following:

Lv1: Single composite rule provided; model applies it to premise knowledge. For example, rdfs2_3_7
(Table 2):

Lv2: Only the necessary rules from Table 1 are presented separately (e.g., rdfs2, rdfs3, and rdfs7);
model applies all given rules.

Lv3: Complete set of six rules (Table 1) provided; model must select relevant rules (e.g., rdfs2, rdfs3,
and rdfs7 from the six available), apply them, and report which rules were used.

Strict prompt templates define output formats to prevent background knowledge incorporation and
proficient result extraction.

3.4. Evaluation Metrics

We extract inferred triples from model outputs and compare them with conclusions from an RDFS
reasoner using Apache Jena Inference API [9]. To mitigate superficial variations, each triple component
is matched using a 0.95 string-similarity threshold. Precision, recall, and F1 score are then computed.
For Lv3, rule-name selection is further evaluated by exact string matching.

4. Experimental Results

We evaluated GPT-40 mini (gpt-40-mini-2024-07-18) and GPT-40 (gpt-40-2024-08-06) on 19 entailment
rules across all datasets and task levels. For RK and counterfactual datasets (excluding RND), 400
samples per rule were used; 100 samples per rule were used for RND and NS.

4.1. Inference Performance

Table 3 shows average F1 scores by rule type (1-rule: single RDFS entailment rule, 2-rule: combinations
of two rules, 3-rule: combinations of three rules) and task level. GPT-40 consistently outperformed
GPT-40 mini across all conditions, maintaining high inference accuracy even under complex conditions
(3-rule and Lv3). Both models showed decreased F1 scores as task complexity increased, with GS
consistently recording the lowest scores, while GSC consistently outperforming GS. For GPT-40 mini,
performance dropped significantly under 3-rule Lv3 conditions (F1=0.30 for GS, 0.38 for GSC), whereas
GPT-40 maintained relatively high performance (F1=0.71 for GS, 0.82 for GSC under same conditions).

4.2. Rule Selection Performance

Table 4 shows average F1 scores for rule selection accuracy in Lv3 tasks. GPT-40 demonstrated high
rule selection accuracy, with F1 scores above 0.89 for all datasets. In contrast, GPT-40 mini showed
an unusual trend: lower rule selection accuracy in 1-rule tasks compared to 2-rule and 3-rule tasks.
An analysis of error cases suggests that this counterintuitive trend stems from the model frequently
inferring knowledge not present in the prompt, leading to the incorrect application of additional rules.
To illustrate this behavior, Table 5 shows a case where GPT-40 mini incorrectly applied rdfs3 in addition
to the required rdfs2. Although no rdfs:range information was provided, the model supplemented it



Table 3
Average F1 scores by rule type and task level

Rule Level GPT-40 mini GPT-40
Type RK S NA NR SNA SNR GS GSC RND NS |[RK S NA NR SNA SNR GS GSC RND NS

Lvl | 0.89 0.85 0.91 090 0.88 0.87 0.66 0.77 0.87 0.86|0.95 0.94 096 096 0.95 094 0.88 091 0.94 0.97
T-rule| Lv2 |0.89 0.85 0.91 0.90 0.88 0.87 0.66 0.77 0.87 0.86|0.95 094 0.96 0.96 0.95 0.94 0.88 091 094 0.97
Lv3 |0.70 0.68 0.75 0.72 0.71 0.70 0.49 0.56 0.65 0.77|0.94 0.92 0.95 095 0.93 093 0.83 091 091 091

Lvl |0.92 0.88 0.89 091 0.88 0.89 0.64 0.73 0.88 0.93|0.95 0.89 095 094 0.93 092 0.88 091 0.93 095
2-rule| Lv2 |0.83 0.81 0.83 0.83 0.81 0.74 0.52 0.61 0.80 0.79 |0.96 0.93 0.96 0.97 0.95 0.88 0.83 0.87 0.96 0.97
Lv3 | 0.66 0.62 0.65 0.68 0.63 0.61 0.35 0.44 0.65 0.61[0.92 0.89 092 092 0.89 091 0.79 0.86 0.90 091

Lvl |0.83 0.82 0.80 0.83 0.78 0.80 0.50 0.59 0.83 0.84|0.94 0.92 0.96 095 0.95 094 0.87 091 0.93 0.96
3-rule| Lv2 [0.72 0.68 0.71 0.71 0.67 0.67 0.40 0.49 0.68 0.63]0.94 0.91 093 093 091 092 079 0.88 0.94 0.96
Lv3 |0.64 0.60 0.58 0.61 0.56 0.58 0.30 0.38 0.58 0.56|0.89 0.86 0.88 0.88 0.86 0.86 0.71 0.82 0.88 0.88

Table 4
Average F1 scores for rule selection in Lv3 tasks

Rule GPT-40 mini GPT-40
Type |[RK S NA NR SNA SNR GS GSC RND NS |[RK S NA NR SNA SNR GS GSC RND NS

1-rule | 0.84 0.84 0.85 0.85 0.85 0.85 0.76 0.77 0.85 0.80|0.98 0.99 0.99 0.99 1.00 099 0.98 0.99 1.00 0.99
2-rule|0.89 0.90 0.92 0.92 090 0.86 0.81 0.82 0.95 0.96(0.99 0.98 0.99 099 0.99 0.92 0.89 091 0.99 1.00
3-rule|0.82 0.85 0.81 0.82 0.82 0.83 0.84 0.85 0.87 0.91|0.96 0.97 0.97 0.97 0.96 0.97 093 096 097 0.98

Table 5
Example of incorrect rule application: GPT-40 mini applies rdfs3 in a task requiring only rdfs2.

Premise Knowledge
<residence, rdfs:domain, Person>
<Camille_Leblanc-Bazinet, residence, Boulder, Colorado>

Expected Output
<Camille_Leblanc-Bazinet, rdf:type, Person> rdfs2

Model Output
<Camille_Leblanc-Bazinet, rdf:type, Person> rdfs2
<Boulder,_Colorado, rdf:type, Residence> rdfs3

from context and produced an extra inference. Such overgeneralization lowers rule selection accuracy,
especially under the 1-rule condition.

5. Discussion and Conclusion

Both models achieved high inference accuracy on real-world knowledge tasks. GPT-40 maintained stable
F1 scores even in complex settings (3-rule, Lv3), demonstrating effective rule-based logical inference.
GPT-40 consistently outperformed GPT-40 mini, suggesting that larger parameters and broader training
data enable more complex reasoning.

However, GPT-40 mini tended to supplement missing knowledge even in tasks requiring strict rule-
based inference. While logically inconsistent, this behavior may prove advantageous in real-world
applications where knowledge incompleteness is unavoidable.

Inference accuracy was consistently lowest on the GS dataset across all conditions, with GSC showing
relatively low but better performance than GS. This suggests LLMs rely on lexical cues and naming
conventions in resource names as heuristics for inference. GPT-40’s results indicate that increased
model scale can reduce this reliance and enhance structurally grounded inference.

These findings highlight both strengths and limitations of LLMs in ontological inference. While LLMs



demonstrate strong potential for RDFS reasoning in realistic settings, their weaker performance under
counterfactual conditions and reliance on linguistic patterns highlight critical areas for improvement,
particularly in generalizing to unfamiliar data. Future work should focus on analyzing LLMs’ inference
processes in greater detail and extend evaluations with more expressive ontology languages such as
OWL.

Supplemental Material: Evaluation code, datasets, and detailed results are available at https://
anonymous.4open.science/r/LLM-InferRDFS-MultiLevelEval-EBFC/.
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