
Key Aspect Prediction for Silent Vulnerability Fixes via
Semantic Augmentation
Dongshun He1, Linyi Han1 and Xiaowang Zhang1,∗

1College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China

Abstract
Silent vulnerability fixes pose significant risks to downstream open-source software (OSS) users, as the lack of
vulnerability details in fix patches leaves users unaware of potential threats. Previous work predicts the key
aspects of vulnerability fixes using an encoder-decoder model to aid users in understanding these fixes. However,
their approach overlooks the limited expressiveness of commit messages and the varied intents underlying
code changes. In this poster, we propose a semantic-augmented method for key aspect prediction in silent
vulnerability fixes. Firstly, we enrich commit semantics by incorporating information from multiple external
sources. Then, we design a Chain-of-Thought (CoT) prompt to analyze code semantics at the hunk level and
identify security-relevant changes. Finally, we design a task-specific embedding method to represent code diffs
and retrieve semantically similar commits, guiding large language models (LLMs) to predict the vulnerability
type, root cause, impact, and attack vector. Experiments on our constructed dataset demonstrate that our method
outperforms baselines in key aspect prediction across ROUGE-L and METEOR.

Keywords
Silent Vulnerability Fixes, Key Aspect Prediction, Semantic Augmentation, Large Language Model

1. Introduction

Thewidespread adoption of open-source software (OSS) has heightened security concerns, with disclosed
Common Vulnerabilities and Exposures (CVE) records rising from 7937 in 2014 to 39974 in 2024,
according to the National Vulnerability Database (NVD) [1]. To mitigate these vulnerabilities, developers
submit security patches to repositories. Coordinated Vulnerability Disclosure (CVD) is a widely used
vulnerability disclosure model that requires vulnerabilities to be silently fixed [2]. This means that
the details of the vulnerability must not be revealed in the patches before the vulnerability is publicly
disclosed. In this context, downstream OSS users face a high risk due to their lack of awareness about
silently fixed vulnerabilities.

Prior work has focused on identifying silent vulnerability fixes [3] [4], but such methods suffer from
high false positive rates, placing the burden on OSS users to manually interpret AI-generated predictions.
To address this limitation, Sun et al. [5] propose an encoder-decoder model that generates the key
aspects of vulnerability fixes—namely, the vulnerability type, root cause, impact, and attack vector—from
commit messages and code diffs, enabling users to better understand vulnerability information. However,
their method overlooks the limitations of directly using commit messages and code diffs as input for
key aspect prediction. Specifically, commit messages in silent vulnerability fixes are often brief and lack
meaningful semantic information. For example, the message in commit:01c61f8 is simply “Proper fix
for #248,” which offers no insight into the vulnerability’s nature, cause, or impact. Such sparse textual
context makes it difficult for models to infer the underlying security issues. In addition, code diffs
in a commit may contain multiple changes serving diverse purposes—such as feature updates, code
refactoring, or style adjustments—many of which are unrelated to vulnerability fixing. Directly using
all code diffs introduces semantic noise, which undermines the accuracy of key aspect prediction.
To address these challenges, we propose a semantic-augmented method for key aspect prediction

in silent vulnerability fixes. Firstly, our approach enriches the limited commit message semantics by

ISWC 2025 Companion Volume, November 2–6, 2025, Nara, Japan
∗Corresponding author.
Envelope-Open hds@tju.edu.cn (D. He); hanly2@tju.edu.cn (L. Han); xiaowangzhang@tju.edu.cn (X. Zhang)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:hds@tju.edu.cn
mailto:hanly2@tju.edu.cn
mailto:xiaowangzhang@tju.edu.cn
https://creativecommons.org/licenses/by/4.0/deed.en


Semantic Enrichment of Commit Messages

Hunk-Level Code Analysis via CoT

Wikipedia

Github REST API

Regular expression

Software background

Pull request

Issue

Hunk1

Hunk2

Hunkn

...

Chain-of-Thought

1. Commit intent

2. Hunk behavior

3. Relevance to patch

4. Security impact

5. Dependency risks

6. Fix relevance (Y/N)
Y

Y

N

Hunk1 with CoT analysis

...

Hunkn with CoT analysis LLM

Training set

Retrieval of Vulnerability Fixes

Retrieved similar commits

Encoder

Encoder  Vector database

Enriched commit message

Overall code analysis

Key Aspect Prediction

Enriched commit message Overall code analysis

LLM

LLM

Commit

Commit Message

Code Diff

Retrieved similar commits

Commit

Key Aspects:
Vulnerability type
Root cause
Attack vector
Impact

Figure 1: Overview of the proposed semantic-augmented framework for key aspect prediction.

incorporating information from multiple external sources. Then, we design a CoT prompt to analyze
code semantics at the hunk level, enabling the identification of security-relevant changes within mixed-
purpose commits. Finally, we design a task-specific embedding method to represent complex code
diffs and retrieve semantically similar commits. These retrieved examples are combined with enriched
commit messages and code diff analysis to guide LLMs in predicting the vulnerability type, root cause,
impact, and attack vector.
We construct a large-scale dataset comprising 10,912 vulnerability-fixing commits and their cor-

responding key aspects, covering 3,575 open-source projects and 9,586 CVE records. This dataset is
available at https://doi.org/10.6084/m9.figshare.29693216.v1.

Experimental results on our constructed dataset show that the proposedmethod outperforms baselines
in key aspect prediction, achieving higher scores on ROUGE-L and METEOR.

2. Approach

Our task is to predict four key aspects of a vulnerability—its type, root cause, impact, and attack
vector—given a vulnerability-fixing commit that includes a commit message and code diff. In this
section, we present our semantic-augmented prediction framework, which consists of three components:
(1) enriching the semantics of commit messages using external sources, (2) analyzing code diffs at
the hunk level via CoT prompting, and (3) retrieving semantically similar commits with task-specific
embedding method. The results from all three components are integrated to guide LLMs in predicting
the vulnerability aspects.The overall framework is illustrated in Figure 1.

2.1. Semantic Enrichment of Commit Messages

Commit messages in silent vulnerability fixes are often terse and uninformative, making it difficult to
infer the underlying security context. However, we observe that many such messages include references
to external resources, such as issue identifiers (e.g., “fix #248”). These references can be leveraged
to retrieve richer contextual information. We use regular expressions to extract issue numbers from

https://doi.org/10.6084/m9.figshare.29693216.v1


commit messages and query the corresponding GitHub issues using the GitHub REST API. In addition,
we obtain the content of the pull request (PR) associated with the commit, which often contains more
detailed descriptions of the code changes. To further enrich the semantic context, we retrieve the
software project’s Wikipedia page as a source of background knowledge. This is because key aspects
often contain software-specific features [6]. Since not all commits are associated with PRs, issues, or
relevant Wikipedia pages, our method simply leverages the remaining available sources when part of
this external context is missing. As the issue, PR, and Wikipedia content can be lengthy, we employ
an LLM to summarize each source into a vulnerability-relevant abstract. These summaries are then
concatenated with the original commit message to form an enriched commit message.

2.2. Hunk-Level Code Analysis via CoT

Commits often include multiple code changes that serve different purposes, such as feature updates,
refactoring, or formatting, which may not be related to vulnerability fixes. To isolate the security-
relevant portions of a commit, we analyze the code diff at the hunk level, treating each hunk as a
standalone semantic unit. We design a CoT prompting strategy to evaluate each hunk. For each hunk,
the CoT prompt guides the LLM through six sequential steps: identifying the commit’s overall intent,
summarizing the hunk’s behavior, evaluating its alignment with the commit’s purpose, assessing its
security implications, analyzing potential dependency risks, and determining whether the hunk is
related to a vulnerability fix. We apply this process to all hunks within a code diff. For those identified
as vulnerability-related, we collect their corresponding CoT analysis results and use an LLM to generate
an overall analysis of the security-relevant code changes. This enriched, hunk-filtered code diff analysis
is then provided to the final prediction stage alongside the enriched commit message.

2.3. Task-Specific Retrieval of Vulnerability Fixes

To better leverage the in-context learning capabilities of LLMs, we adopt a retrieval-augmented few-shot
prompting approach. For each commit, we retrieve top-𝑘 similar vulnerability-fixing commits from the
training set as reference examples. We construct a vector database using the commits in the training set,
where each commit is represented by an embedding that captures its security-relevant code semantics.
Specifically, we use only the code hunks identified as vulnerability-related by the method described
in Section 2.2. Within each hunk, we exclude unchanged lines and retain only the added and deleted
lines, as these are the primary carriers of vulnerability semantics. To encode the added and deleted
lines, we employ the CodeT5+ 110m embedding model [7]. Since the two types of lines originate from
different versions of the code, we embed them separately into two 256-dimensional vectors. These
vectors are then concatenated to form a 512-dimensional representation for each commit. The resulting
embeddings are stored in a vector database. During inference, we compute cosine similarity between
the test commit and all training samples to retrieve the top-𝑘 most relevant examples.

Finally, we combine the original commit with the enriched commit message, the overall code analysis,
and the retrieved similar commits. These components are concatenated to form the input prompt,
which is then fed into a LLM to generate the four key aspects.

3. Experiments

We construct a large-scale dataset of vulnerability-fixing commits to evaluate the effectiveness of our
method. We first collect all CVE entries from the NVD up to April 9, 2025. Each entry includes a CVE ID,
a textual vulnerability description (TVD), and a set of external references. For OSS projects hosted on
GitHub, the URL of a vulnerability-fixing commit typically follows the format: https://github.com/own-
er/repo/commit/commit_hash. Since only a small subset of CVE entries includes such URLs, we use
regular expressions to extract entries containing GitHub commit links and and then obtain the corre-
sponding patch files, from which we extract commit messages and code diffs. We filter out commits
with code diffs exceeding 2,000 tokens to keep the dataset balanced and representative of common



vulnerability fixes. Each CVE’s TVD contains information related to the key aspects of the vulnerability.
We use DeepSeek V3 [8] with prompts to extract four aspects from the TVD: vulnerability type, root
cause, attack vector, and impact. As TVDs may lack certain aspects, we additionally retrieve corre-
sponding TVDs from the IBM X-Force vulnerability database and apply the same extraction process.
Commits are discarded if any key aspect remains unavailable after both stages. As a result, we obtain
a dataset of 10,912 vulnerability-fixing commits and their corresponding key aspects, covering 3,575
open-source projects and 9,586 CVE entries. We randomly divide the dataset into 80% for training and
20% for testing.

We compare ourmethod against two baselines: the CodeBERT-based encoder-decodermodel proposed
by Sun et al. [5], and DeepSeek V3 in both zero-shot and 8-shot settings. Our method also uses DeepSeek
V3 as the backbone LLM, but differs in how the input is structured and enhanced through semantic
augmentation and retrieval. We evaluate all methods using ROUGE-L and METEOR, which are widely
used metrics for text generation tasks. For few-shot settings, we retrieve 8 examples using the method
described in Section 2.3 and include them in the prompt.

Table 1
Comparison with baselines and ablation variants on key aspect prediction.

Model
Vulnerability Type Root Cause Attack Vector Impact
Rouge-L METEOR Rouge-L METEOR Rouge-L METEOR Rouge-L METEOR

CodeBERT-based 42.63 36.50 14.58 11.43 23.82 16.79 24.23 21.92
DeepSeek (0-shot) 35.26 29.80 11.57 10.84 22.30 16.74 18.40 17.36
DeepSeek (8-shot) 41.72 35.78 14.01 12.42 24.21 18.25 18.71 20.32

Ours 45.31 38.50 14.69 12.62 30.90 24.51 29.41 30.25
Ours w/o Message Enrichment 43.15 36.48 14.64 12.64 29.77 19.44 26.52 24.32

Ours w/o Code Analysis 43.41 34.68 17.41 14.70 30.57 20.90 28.06 25.48
Ours w/o Retrieval 38.49 31.68 12.64 10.88 25.20 19.34 18.99 19.87

The experimental results are shown in Table 1. Our method outperforms all baselines across all
four key aspects under both ROUGE-L and METEOR metrics. For root cause, however, the overall
scores remain relatively low across all methods. This is mainly because root cause is strongly tied to
specific vulnerabilities and can be expressed in diverse ways. The current metrics emphasize textual
overlap rather than semantic similarity, which makes it difficult to capture the underlying consistency
in this aspect. We also observe that the variant without message enrichment achieves slightly better
performance on root cause prediction. The reasonmay be that additional external information introduces
expressions that diverge from the annotated labels, thereby reducing alignment under text-similarity
metrics. Even so, our full model still yields the best overall performance across all aspects. The ablation
study further demonstrates that each component—commit message enrichment, code diff analysis,
and example retrieval—contributes meaningfully to the final result, with retrieval having the most
significant impact.

4. Limitations

Our method requires several steps of interaction with LLMs, which increases computational cost. Future
work will focus on exploring optimization strategies to reduce resource consumption and improve
scalability. In addition, the evaluation is currently limited to ROUGE-L and METEOR, which measure
textual similarity rather than semantic correctness. Future studies will incorporate expert annotation
and domain-specific metrics to provide a more reliable assessment of practical utility.



5. Conclusion

In this poster, we propose a semantic-augmented framework for predicting key aspects of silent
vulnerability fixes, including the vulnerability type, root cause, impact, and attack vector. Our ap-
proach enhances commit understanding through external knowledge, hunk-level code analysis, and
retrieval-based few-shot prompting. Experiments on a large-scale dataset demonstrate that our method
outperforms baselines across all key aspects.

Declaration on Generative AI

During the preparation of this work, we used ChatGPT in order to: Grammar and spelling check.
After using this tool, we reviewed and edited the content as needed and take full responsibility for the
publication’s content.

References

[1] National Vulnerability Database (NVD), National vulnerability database, 2025. URL: https://nvd.
nist.gov/.

[2] Wikipedia, Coordinated vulnerability disclosure, 2025. URL: https://en.wikipedia.org/wiki/
Coordinated_vulnerability_disclosure.

[3] J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang, A. E. Hassan, Finding A needle in a haystack:
Automated mining of silent vulnerability fixes, in: 36th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021, IEEE,
2021, pp. 705–716. URL: https://doi.org/10.1109/ASE51524.2021.9678720. doi:10.1109/ASE51524.
2021.9678720.

[4] Y. Zhou, J. K. Siow, C. Wang, S. Liu, Y. Liu, SPI: automated identification of security patches via
commits, ACM Trans. Softw. Eng. Methodol. 31 (2022) 13:1–13:27. URL: https://doi.org/10.1145/
3468854. doi:10.1145/3468854.

[5] J. Sun, Z. Xing, Q. Lu, X. Xu, L. Zhu, T. Hoang, D. Zhao, Silent vulnerable dependency alert
prediction with vulnerability key aspect explanation, in: 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, IEEE, 2023, pp. 970–982.
URL: https://doi.org/10.1109/ICSE48619.2023.00089. doi:10.1109/ICSE48619.2023.00089.

[6] L. Han, S. Pan, Z. Xing, J. Sun, S. Yitagesu, X. Zhang, Z. Feng, Do chase your tail! missing key
aspects augmentation in textual vulnerability descriptions of long-tail software through feature
inference, IEEE Trans. Software Eng. 51 (2025) 466–483. URL: https://doi.org/10.1109/TSE.2024.
3523284. doi:10.1109/TSE.2024.3523284.

[7] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, S. C. H. Hoi, Codet5+: Open code large language
models for code understanding and generation, arXiv preprint (2023).

[8] DeepSeek-AI, Deepseek-v3 technical report, 2024. URL: https://arxiv.org/abs/2412.19437.
arXiv:2412.19437.

https://nvd.nist.gov/
https://nvd.nist.gov/
https://en.wikipedia.org/wiki/Coordinated_vulnerability_disclosure
https://en.wikipedia.org/wiki/Coordinated_vulnerability_disclosure
https://doi.org/10.1109/ASE51524.2021.9678720
http://dx.doi.org/10.1109/ASE51524.2021.9678720
http://dx.doi.org/10.1109/ASE51524.2021.9678720
https://doi.org/10.1145/3468854
https://doi.org/10.1145/3468854
http://dx.doi.org/10.1145/3468854
https://doi.org/10.1109/ICSE48619.2023.00089
http://dx.doi.org/10.1109/ICSE48619.2023.00089
https://doi.org/10.1109/TSE.2024.3523284
https://doi.org/10.1109/TSE.2024.3523284
http://dx.doi.org/10.1109/TSE.2024.3523284
https://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2412.19437

	1 Introduction
	2 Approach
	2.1 Semantic Enrichment of Commit Messages
	2.2 Hunk-Level Code Analysis via CoT
	2.3 Task-Specific Retrieval of Vulnerability Fixes

	3 Experiments
	4 Limitations
	5 Conclusion

