
MetaExplainer In Action: An Overview of a Framework to
Generate Multi-Type User-Centered Explanations⋆

Shruthi Chari1, Oshani Seneviratne1,∗, Prithwish Chakraborty2, Pablo Meyer3 and
Deborah L. McGuinness1

1Rensselaer Polytechnic Institute, Troy, New York
2Amazon Science, New York
3IBM Research, Yorktown Heights, New York

Abstract
Explanations are crucial for building trustworthy AI systems, but a gap often exists between the explanations
provided by models and those needed by users. We build on prior research and direct feedback from clinicians,
which reveal that users prefer interactive, question-driven, and diverse explanations. To bridge this gap, we present
MetaExplainer, a neuro-symbolic framework that generates user-centered, multi-type explanations tailored to user
questions. MetaExplainer follows a three-stage pipeline: (1) decompose user questions into machine-readable
representations using state-of-the-art large language models (LLMs), (2) invoke appropriate model-specific
explainer methods to generate recommendation rationales, and (3) synthesize coherent, user-friendly natural-
language explanations that summarize and contextualize these outputs. We demonstrate MetaExplainer with
an end-to-end example on the widely used PIMA Indian Diabetes dataset, highlighting how the framework
addresses diverse clinical questions. Overall, MetaExplainer offers a versatile, traceable approach to explanation
generation, capable of addressing a broad spectrum of user queries and advancing AI explainability across
domains. MetaExplainer’s implementation, along with quantitative and qualitative evaluation results, is detailed
in [1], and the open-source code is publicly available at https://github.com/tetherless-world/metaexplainer.

Keywords
Explanation types, User-centered explainability, Neurosymbolic AI, Question-driven explanations

1. Introduction

Explainable AI has been a cornerstone of research for decades and has evolved in tandem with ad-
vancements in AI approaches. However, with the increase in complexity of AI methods, the results of
explainer methods alone have been found insufficient for end-user needs. Several researchers [2, 3] have
found that users require explanations for different purposes and as answers to various question types to
effectively use explanations in their decision-making when interacting with AI systems. Further, several
taxonomies [3, 4] have categorized explanation types, there remains a gap in generating real-time,
user-centered explanations.

Hence, in the pursuit of supporting natural-language (NL) [5], diverse [6, 7] and multi-type user-
centered [8] explainability, we introduce the MetaExplainer (Fig. 1), a multi-stage general-purpose
explanation framework capable of generating explanations for end-user questions by summarizing
explanations from several model explainers (such as SHAP [9], DiCE [10]) in NL. Specifically, with
the MetaExplainer, we explore how interactions between various sub-components of explanation
systems, i.e., AI reasoning, prompt-driven interactions with large language models (LLMs) enriched
with knowledge from the Explanation Ontology (EO) [11] and explainer methods, can help generate
explanations of AI systems. In this paper, we provide an overview of the framework with an end-to-end
example of how the MetaExplainer generates NL explanations.

ISWC 2025 Companion Volume, November 2–6, 2025, Nara, Japan
∗Corresponding author.
Envelope-Open charishruthi@gmail.com (S. Chari); senevo@rpi.edu (O. Seneviratne)
Orcid 0000-0003-2946-7870 (S. Chari); 0000-0001-8518-917X (O. Seneviratne); 0000-0003-1407-7677 (P. Chakraborty);
0000-0001-5281-4661 (P. Meyer); 0000-0001-7037-4567 (D. L. McGuinness)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/tetherless-world/metaexplainer
http://purl.org/heals/eo/3.0.0
mailto:charishruthi@gmail.com
mailto:senevo@rpi.edu
https://orcid.org/0000-0003-2946-7870
https://orcid.org/0000-0001-8518-917X
https://orcid.org/0000-0003-1407-7677
https://orcid.org/0000-0001-5281-4661
https://orcid.org/0000-0001-7037-4567
https://creativecommons.org/licenses/by/4.0/deed.en


Figure 1: Workflow diagram of MetaExplainer, highlighting the different input and output streams. Methods
are indicated by green boxes and all other data components are shown in blue.

2. Method Overview

Our MetaExplainer is a framework that can generate natural-language explanations in response to user
questions, along explanation types (Tab. 1) we currently support. In the design of the MetaExplainer
(Fig. 1), we adopt a modular approach - in that we break down the design into three stages; decompose:
convert the user question into a machine interpretation that can then be delegated: to explainer methods
registered against explanation types in EO and finally, the explainer outputs are synthesized into NL
explanations presented to the end-users. We implement the framework as a Python package, such that
each of the stages can call methods and classes from one another , enabling the stages to build off of the
intermediary stage outputs as seen in Fig. 1.
Decompose: In the Decompose stage, our objective is to generate a machine-actionable parse of a user
question(s), including the explanation type that best addresses the question and the features being
asked about. For example, in a question - “Why is a 60-year-old woman with a BMI of 28 more likely to
have Diabetes?”, we would want to identify that this question is best addressed by facts in contrastive
explanations and has filters applied on features - age, BMI. These attributes, if captured, help ensure
that the explainer methods can reliably address the user’s question. We find that predicate logic can
serve as a good intermediate to parse in further stages of the MetaExplainer. Hence, we build a question
bank of 𝑢𝑞: 𝑟𝑞 pairs (leveraging question type-explanation type mappings in EO) for each explanation
type, expand this question bank using GPT, and fine-tune LLama2 and Llama3 LLMs on this question
bank to generate 𝑟𝑞 from 𝑢𝑞. Hence, in the Decompose stage, we set up a task to convert a user question
𝑢𝑞 into a reframed question 𝑟𝑞, which is a tuple capturing the {question, explanation type, machine
interpretation, action}.
Delegate: In the Delegate stage, the objective is to execute relevant explainer methods to address a
user question (𝑢𝑞). Here, we further break it down into sub-tasks: parsing the 𝑟𝑞, executing explainers



(𝑒𝑚), and processing explainer outputs (𝑒𝑞). In the parsing task, we parse the machine interpretation
field of the 𝑟𝑞 for filters on features, the explanation type (𝑒𝑡) field to identify what explainer methods
(𝑒𝑚) can be run, and the action field to identify if there are other actions the question asks about (e.g.,
preprocessing, accuracies, etc.) In the execution task, we run open-source explainer methods (𝑒𝑚)
(Tab. 1), e.g. SHAP for contrastive explanations. We leverage the explanation type - explainer method
mappings in the EO to identify what explainers to run. Finally, in the output processing step, we persist
the explainer outputs as dataframes based on the explanation modality (i.e., features, instances or rules,
again mappings captured in the EO), that the Synthesis stage can then use.
Synthesis: In the Synthesis stage, we combine and synthesize the explainer output(s) into natural-
language (NL) explanations aligned with the identified explanation type’s (𝑒𝑡) expected templates. We
further break down the Synthesis into three sub-tasks, including a retrieval step where we extract
relevant data points from the explainer outputs to include in the final explanation, an augmenta-
tion/alignment step where we align the outputs to fit the identified explanation type’s (𝑒𝑡) templates,
and a generation step where we output NL explanation (ℰ𝑞) populated with the retrieved content in line
with the template for the 𝑒𝑡. Hence, the synthesis task lends itself well to an application of the widely
popular Retrieval-Augmented-Generation (RAG) [12], [13] technique, wherein we design prompts
enriched with 𝑒𝑡 to generate NL explanations (𝐸) by retrieving relevant content from explainer outputs
(𝑒𝑞) from the previous stage. We generate two explanations for each question, one that summarizes the
explainer outputs and the other that summarizes the subset of records that matched the filters in user
question, 𝑢𝑞.

Algorithm 1 Pseudocode for MetaExplainer indicating the three stages - Decompose, Delegate, and
Synthesis, and their inputs and outputs.
Require: Explanation Ontology (EO), Data Store (DS)

Explanation type - explainer graph, 𝐺1 = {(𝑡𝑖, 𝑒𝑚𝑗), ∀𝑖 ∈ 𝑁 and ∀𝑗 ∈ 𝑀}

Data type - explainer graph, 𝐺2 = {(𝑑𝑘, 𝑒𝑚𝑗), ∀𝑘 ∈ 𝐾 and ∀𝑗 ∈ 𝑀}

Input
𝑢𝑞 User Question

𝑟𝑞 = Decompose(𝑢𝑞)
𝑒𝑞 = Delegate(𝑟𝑞)
𝐸 = Synthesis(𝑒𝑞)

Output
𝑟𝑞 list of questions reframed from 𝑢𝑞
𝐸 list of explanations {𝐸𝑒} that answer 𝑢𝑞 where 𝐸𝑒 = {ℰ𝑒, 𝑡𝑒, 𝑒𝑚𝑒, 𝑟𝑞𝑒, 𝑢𝑞𝑒}

2.1. Explanation Types supported in the MetaExplainer

We currently support five explanation types in the MetaExplainer and explainer methods that can
generate explanations along the same, as shown in Tab. 1. System developers could add support for
more explanation types by including the explainer methods in the Delegate stage of the MetaExplaier
and registering the expected outputs and question types in the EO.

3. MetaExplainer in Action: Diabetes Use Case

We evaluated the MetaExplainer, by applying the five explainer methods (Tab. 1) we currently support
in the Delegate stage on the best performing predictive model, a random forest (RF) model on the



Table 1
Explanation types and explainer methods we currently support in the MetaExplainer

Explanation Type Definition Explainer Method
Case-based Provides solutions that are based on actual prior cases

that can be presented to the user to provide compelling
support for the system’s conclusions and may involve
analogical reasoning, relying on similarities between fea-
tures of the case and of the current situation.

Protodash

Contrastive Answers the question “Why this output instead of that
output,” making a contrast between the given output and
the facts that led to it (inputs and other considerations),
and an alternate output of interest and the foil (facts
that would have led to it).

SHAP

Counterfactual Addresses the question of what solutions would have
been obtained with a different set of inputs than those
used.

DiCE

Data Focuses on what the data is and how it has been used
in a particular decision, as well as what data and how it
has been used to train and test the ML model. This type
of explanation can help users understand the influence
of data on decisions.

Protodash

Rationale About the “why” of anML decision, and provides reasons
that led to a decision, and is delivered in an accessible
and understandable way, especially for lay users.

RuleXAI

widely used tabular dataset, PIMA Indian Diabetes [14] dataset. We generated a question bank of user
questions (𝑢𝑞) around the features in predicting whether patients have Diabetes or not, and use these
to design and test the MetaExplainer. Our results show good performance across all stages of the
MetaExplainer, with a 59.06% F1-score in question reframing in the Decompose stage, 70% faithfulness
in model explanations in the Delegate stage, and 67% context-utilization in NL synthesis. We describe
our results in our full-paper linked in Sec. 1.

3.1. End-to-end example of user question being addressed by the MetaExplainer

1 Question: How did the model justify predicting Diabetes for a 55-year-old male with a BMI of 18 and a
Diabetes Pedigree Function of 0.25?

2
3 Explanation Type: Rationale Explanation
4
5 Machine Interpretation:
6 Predict(Diabetes, Age = 55, Sex = Male, BMI = 18, DPF = 0.25)
7
8 RuleXAI output:
9 1. IF BMI = (<32.25, inf) THEN label = {1}

10 2. IF BMI (-inf, 37.05) THEN label = {1}
11
12 Explainer Method Metrics:
13 Average rule length - 1.4
14 Fidelity: 0.4

Figure 2: Decompose and Delegate outputs from the MetaExplainer for an example question in a Diabetes
prediction use case

As shown in Fig.s 2 and 3, our MetaExplainer framework processes a user question, 𝑢𝑞: ”How did
the model justify predicting diabetes for a 55-year-old male with a BMI of 18 and a diabetes pedigree
function of 0.25?”

In Fig. 2, the user question, 𝑢𝑞, is translated into its predicate logic equivalent, 𝑟𝑞, and a rationale



explanation type is identified during the Decompose stage. The fields for machine interpretation
and explanation type are then passed to the Delegate stage. Here, the RuleXAI post-hoc explainer
method [15] generates rationales or trace-based explanations, outputting rules that might have been
used in the classification model. Further, we quantify the rules using relevant explanation metrics for the
rule explanation modality [16]—specifically, rule length and fidelity metrics for rule-based explanations.
The generated rules have an average rule length of 1.4 and a fidelity of 0.4.

Finally, as depicted in Fig. 3, the rules and the user question, 𝑢𝑞, are utilized by the Synthesis stage
to produce NL summaries, 𝐸𝑞, of the subset of data that matched the feature group restrictions in the
question and the rules responsible for the classification model’s prediction of diabetes for a 55-year-old
male with a BMI of 18 and a diabetes pedigree function of 0.25. This illustrates how each stage of
the MetaExplainer builds upon the outputs of previous stages. Our modular, multi-stage framework
effectively captures the restrictions in the question and traces back outputs that a purely LLM approach
might miss.

1 Explanation of Matched subset:
2 There are no full matches in the dataset based on the specified feature group. However, the dataset

has been summarized, showing the descriptive statistics for the variables in the dataset.
3 - The mean age is 68.1 years.
4 - The mean BMI is 29.49.
5 - The mean Diabetes Pedigree Function (DPF) is 0.4868.
6 - The outcome variable has a mean value of 0.3, indicating that the majority of the observations

have an outcome of 0.
7
8 Explanation of explainer output:
9 The rules derived for classification based on the features

10 'Age' and 'BMI' are as follows:
11 1. IF BMI is less than or equal to 32.25, THEN label = 0
12 2. IF BMI is greater than 37.05, THEN label = 1
13
14 These rules provide a clear guideline for classifying data based on BMI values, with different labels

assigned depending on the BMI range. This type of explanation helps users understand the rationale
behind the decision-making process in machine learning models, allowing them to assess the
reasoning and make informed judgments.

Figure 3: Natural-language Explanations of Diabetes Prediction from Synthesis stage of MetaExplainer

4. Conclusion

We provide an overview of the MetaExplainer, a multi-stage explanation generation framework that
we have designed and implemented, that combines several AI and machine learning methods - LLMs,
ontologies, predictive and explainer models- to generate user-centered explanations. We evaluate our
framework both qualitatively and quantiatively (evaluating outputs at each stage) on an indicative
healthcare use case, Diabetes, with plans and provisions to expand beyond. Since our framework is
modular, system developers can add support for explanation types beyond those currently supported.
We have open-sourced our implementation and invite the community to contribute. Overall, the
MetaExplainer helps address a timely problem of tailoring explanations to end-user needs and leverages
the strengths of a neuro-symbolic approach to do so.

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly in order to rephrase some of the
sentences and also to fix grammar and spelling issues. After using these tools and services, the authors
reviewed and edited the content as needed and take full responsibility for the publication’s content.



References

[1] S. Chari, O. Seneviratne, P. Chakraborty, P. Meyer, D. L. McGuinness, Metaexplainer: A framework
to generate multi-type user-centered explanations for ai systems, arXiv preprint arXiv:2508.00300
(2025).

[2] S. Tonekaboni, S. Joshi, M. D. McCradden, A. Goldenberg, What clinicians want: contextualizing
explainable machine learning for clinical end use, in: Mach. Learn. for Health. Conf. (ML4HC),
2019, pp. 359–380.

[3] D. Wang, Q. Yang, A. Abdul, B. Y. Lim, Designing theory-driven user-centric explainable ai, in:
Proc. of the 2019 Conf. on Human Factors in Comp. Syst. (CHI), 2019, pp. 1–15.

[4] Q. V. Liao, D. Gruen, S. Miller, Questioning the ai: informing design practices for explainable ai
user experiences, in: Proc. of the 2020 Conf. on Human Factors in Comp. Syst. (CHI), 2020, pp.
1–15.

[5] H. Lakkaraju, D. Slack, Y. Chen, C. Tan, S. Singh, Rethinking explainability as a dialogue: A
practitioner’s perspective, 2022. ArXiv2202.01875.

[6] B. Mittelstadt, C. Russell, S. Wachter, Explaining explanations in ai, in: Proc. of the Conf. on
Fairness, Accountability, and Transparency, 2019, pp. 279–288.

[7] T. Miller, Explanation in artificial intelligence: Insights from the social sciences, Artif. Intell. 267
(Feb. 2019) 1–38.

[8] S. Dey, P. Chakraborty, B. C. Kwon, A. Dhurandhar, M. Ghalwash, F. J. S. Saiz, K. Ng, D. Sow,
K. R. Varshney, P. Meyer, Human-centered explainability for life sciences, healthcare, and medical
informatics, Patterns 3 (May 2022).

[9] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: Advances in
Neural Infor. Process. Syst., 2017, pp. 4768 – 4777.

[10] R. K. Mothilal, A. Sharma, C. Tan, Explaining machine learning classifiers through diverse
counterfactual explanations, in: Proc. of the Conf. on Fairness, Accountability, and Transparency,
2020, pp. 607–617.

[11] S. Chari, O. Seneviratne, M. Ghalwash, S. Shirai, D. M. Gruen, P. Meyer, P. Chakraborty, D. L.
McGuinness, Explanation ontology: A general-purpose, semantic representation for supporting
user-centered explanations, Semantic Web J. Pre-press (May 2023) 1–31.

[12] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, H.Wang, Retrieval-augmented generation
for large language models: A survey, 2023. ArXiv2312.10997.

[13] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih,
T. Rocktäschel, et al., Retrieval-augmented generation for knowledge-intensive nlp tasks, in:
Advances in Neural Inf. Process. Syst. (NeurIPS), 2020, pp. 9459–9474.

[14] V. Chang, J. Bailey, Q. A. Xu, Z. Sun, Pima indians diabetes mellitus classification based on machine
learning (ml) algorithms, Neural Compu. and Appl. 35 (Mar. 2023).

[15] D. Macha, M. Kozielski, Ł. Wróbel, M. Sikora, Rulexai—a package for rule-based explanations of
machine learning model, SoftwareX 20 (Dec. 2022).

[16] J. van derWaa, E. Nieuwburg, A. Cremers, M. Neerincx, Evaluating xai: A comparison of rule-based
and example-based explanations, Artif. Intell. 291 (2021).


	1 Introduction
	2 Method Overview
	2.1 Explanation Types supported in the MetaExplainer

	3 MetaExplainer in Action: Diabetes Use Case
	3.1 End-to-end example of user question being addressed by the MetaExplainer

	4 Conclusion

