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Abstract
The use of Large Language Models (LLMs) becomes increasingly popular for many tasks in the semantic web
and knowledge graph community, e.g., knowledge graph (KG) construction, ontology learning, and ontology
matching. Methods and tools using LLMs for those tasks are often evaluated on existing KGs and ontologies,
which are publicly available on the Web. Thus, it is a reasonable assumption that the test data may have been
seen by the LLM, and it is questionable if the results transfer to a case of unseen data (which is where those
models are intended to be employed).

In this paper, we question the current evaluation paradigm using public data and propose a different approach,
i.e., using a secondary LLM to create ontologies and knowledge graphs for one-time use on the fly. We coin this
approach GET (generate–evaluate–trash). This also allows for repeating experiments and computing standard
deviations and confidence intervals, which facilitates additional statements about the robustness of different
approaches. We demonstrate our suggested approach on the case of taxonomy induction.
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1. Introduction

Large Language Models (LLMs) have become increasingly popular for many tasks in the semantic
web and knowledge graph field [1, 2, 3], including ontology construction [4, 5], ontology refinement
and validation [6, 7, 8], knowledge graph population [9], and ontology matching [10]. They are very
promising both due to their straight forward usage, as well as the amount of knowledge they have
ingested from large corpora during pre-training.

Evaluations of such approaches are often conducted on popular, publicly available ontologies and
knowledge graphs, such as WordNet, Wikidata, the Gene Ontology, etc. This leads to a considerable
problem in the significance of those evaluations: it is likely that the LLM has seen the evaluation data
during training, a problem known as data leakage. While this problem is known in principle [11, 12, 13],
there are only few proposals for solutions. Most of them address the challenge of detecting data leakage,
but proposals for alternative evaluation protocols are still scarce. Moreover, the problem is particularly
prominent in the semantic web and knowledge graphs community, where sharing ontologies and
knowledge graphs as public artifacts is an explicit desideratum. With newer LLM-based AIs being
increasingly equipped with the capability of using live Web search results for providing answers, and/or
learning and based on user-input1, evaluations on public benchmarks makes the evaluation results less
and less significant and leads to a vicious circle of AI evaluation, as shown in Fig. 1.

This observation may be critical for applying LLM-based solutions in real-world scenarios, where the
target data is not known, and where the good results on public benchmarks may lead to expectations
which cannot met in practice. Consequently, recent works have already questioned the transferability
to truly unseen domains, and shown that evaluation results obtained on public datasets are overly
optimistic [14].
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Figure 1: The vicious circle of AI evaluation. There are multiple ways in which benchmarks can become known
to an AI model: by being part of the training data, by being retrieved at run-time, or by learning from user inputs
when evaluating based on a benchmark.

2. Proposed Approach

In order to overcome the data leakage problem in evaluation, we propose a schema as shown in figure 2.
We coin this the GET methodology (generate–evaluate–trash). It foresees the usage of a large language
model to generate synthetic ontologies for one-time usage. In detail, the pipeline has the following
steps:

1. From an original ontology, we extract key characteristics, such as the number of classes and
properties.

2. The extracted characteristics are used to prompt an LLM to generate a set of synthetic ontologies
resembling the original one. We propose two variants: (a) generating ontologies in the same
domain, and (b) generating ontologies in related domains.

3. The result is a set of generated synthetic ontologies which have not been seen by any LLM during
pre-training.

4. The synthetic ontologies are used as benchmarks for testing LLM-based tools, e.g., for ontology
learning.

5. The results are collected. Since multiple similar ontologies can be generated, the approach also
allows for assessing the stability of the results in addition to metrics such as precision and recall
(e.g., by computing standard deviations across all generated ontologies).

6. After running the experiments, the synthetic ontologies should not be reused, but they can be
made public in a research data repository for fostering reproducibility.

In step 2, in order to generate different ontologies, we propose using a temperature above 0. Moreover,
we propose to use an LLM in this step which is not by any tool used in step 4.
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Figure 2: The GET methodology for running evaluations with LLM-based tools for ontologies

3. Example: Taxonomy Induction with LLMs

To test the proposed approach, we run experiments with taxonomy induction on two well-known
ontologies, the Pizza ontology2 and the Wine ontology3. For each of those, we asked an LLM to create
three replica within the same domain, and three in adjacent domains (pasta, sushi, and curry dishes for
the pizza ontology, and beer, whiskey, and gin for the wine domain). Details can be found in [15].

For each of those ontologies, we provide a list of all classes to an LLM, and ask it to return the subclass
axioms holding between those classes. The returned subclass axioms are then compared to the one in
the original ontology to compute recall, precision, and f-measure. The prompts used for generating the
synthetic ontologies and for learning subclass axioms, as well as the generated ontologies, are available
online.4

In our experiment, we use three LLMs of different sizes for taxonomy induction, i.e., Llama 8B, Llama
70B, and Mistral Large (123B) at a temperature of 0. The ontologies themselves are generated using
Gemma-27B at a temperature of 0.5 (in order to create different test ontologies). The results are shown
in table 1. We can make multiple observations:

1. The results on the original ontologies are often worse than those on the generated ones. There are
at least two possible explanations: (a) the “mental models” of the generating and the evaluation
LLMs are more aligned (i.e., LLMs, even different ones, have a certain shared understanding of a
given domain), and (b) the original ontologies were created for instructive purposes, with the goal
of displaying more different OWL constructs rather than providing a complete domain ontology.5

2. The results in related domains are generally worse than those in the original domain, especially
in the tasks based on the wine ontology (i.e., beer, gin, and whiskey ontologies). This may hint at
the LLMs having gathered a part of their ontology engineering knowledge on the wine ontology
and related tutorial materials.

2https://protege.stanford.edu/ontologies/pizza/pizza.owl
3https://www.w3.org/TR/owl-guide/wine.rdf
4https://github.com/HeikoPaulheim/llm-ontology-learning
5For example, the generated pizza ontologies, on average, contain three times more different types of pizza than the original
pizza ontology.

https://protege.stanford.edu/ontologies/pizza/pizza.owl
https://www.w3.org/TR/owl-guide/wine.rdf
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3. The order of tools by performance is not the same. For example, while Llama70B is superior to
Mistral Large on almost all tasks on the original ontologies, Mistral Large outperforms Llama70B
on many of the generated ontologies (both in the same and in similar domains). This may hint at
a higher tendency of Llama70B’s results being an effect of memorization to a larger extent than
Mistral Large. This change of ordering demonstrates that evaluating on synthetic ontologies can
reveal additional information that the evaluation on original ontologies do not provide.

4. The standard deviation is often considerable, showing that the approaches are not very stable,
that good results can also be the result of a lucky coincidence, and that results in the same quality
cannot be guaranteed on unseen data.

Overall, the results demonstrate that with the GET methodology, we can obtain more in-depth results
than by only evaluating on the two original ontologies.

4. Conclusion and Outlook

Test data leakage is an overlooked issue when running LLM-based tools and evaluating them on public
ontologies and knowledge graphs. In this paper, we have proposed the GET (generate–evaluate–trash)
methodology as an alternative: instead of evaluating against publicly available knowledge graphs and
ontologies, we propose to generate those on the fly for one-time evaluations. We have demonstrated
the approach on the task of taxonomy induction, showing that it is possible to evaluate and also assess
robustness of LLM-based taxonomy induction mechanisms.

First and foremost, future work will consist of wrapping the approach in an end-to-end evaluation
pipeline. Further experimentation will go into controlling the complexity and difficulty of the generated
ontologies, and the conduction of experiments in other tasks than taxonomy induction.
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