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Abstract

In this paper, we present CogNet3, an extension of the CogNet2 knowledge base, which combines the dynamic
emotional knowledge of personality groups towards significant events from real word data on Reddit. It aims
to structurally model and correlate the subjective emotional knowledge embedded in events. To model the
dynamic and complex multi-dimensional emotional information of different types of people towards complex
events, we construct three frames, namely Semantic Event, Homophilous Group, and Group Emotion, which
are respectively used to model hierarchical organizational events with emotional information, user groups with
representative differences in personality attributes, and the multi-dimensional dynamic emotional distribution
between user groups and events. To expand the knowledge scale and enhance scalability, we design a LLM
information extraction framework with self-verification capabilities for the automated extraction of subjective
knowledge information. As a result, in comparison with CogNet2, CogNet3 increases 462,381 new event instance
with emotion association, 21,870 different homophilous groups and up to 4,556,057 emotion distribution instances.
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1. Introduction

Modeling human subjective knowledge is critical for advancing applications across domains such as
public opinion analysis [1, 2], personalized interaction systems [3, 4], and computational social science
[5, 6]. Subjective knowledge encompasses individual and collective beliefs, attitudes, and emotional
predispositions toward events, and fundamentally mediates how people perceive, evaluate, and act
upon societal phenomena [7, 8]. For example, public reactions to a climate policy announcement reflect
a synthesis of subjective perceptions about environmental risks, economic trade-offs, and political
credibility. These emotional responses, which may range from enthusiasm to skepticism, are not
arbitrary but shaped by deeply ingrained cognitive frameworks that prioritize specific information
or narratives. Capturing such nuances enables policymakers to decode public sentiment, forecast
behavioral trends, and design communication strategies that align with societal values [9, 10, 11].
Moreover, the temporal dynamics of group emotional states hold equivalent significance [12]. During
a public health crisis, initial uncertainty and fear often give way to frustration or cautious optimism
as new information emerges (e.g., treatment efficacy, policy interventions). Modeling these emotional
trajectories is essential for timely decision-making: identifying inflection points in sentiment can trigger
adaptive interventions, such as targeted messaging to reduce panic or reinforce compliance with public
health guidelines [13]. This underscores the dual importance of not only quantifying static emotional
states but also characterizing their evolution across time and contexts. Such capabilities are foundational
to developing robust socio-technical systems that bridge human psychology with computational models
of collective behavior.
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Although modeling subjective dynamic emotions is of great significance, at the current stage, there
is both a lack of an effective structured system for modeling event-centered subjective knowledge and
an absence of valid methods for modeling the personality of user groups.

Existing works either treat emotional expressions as simple binary emotional labels or fail to struc-
turally model the original comment text content, which limits their ability to associate and express
the complex emotions between users and events. Correspondingly, human emotions toward events
are often diverse and complex. In the case of a vicious incident, while most people would experience
anger, different groups of individuals might additionally feel fear, sadness, or surprise, respectively.
Such complex and compound emotional states cannot be adequately summarized by a simple positive
or negative label. Furthermore, the structured modeling of these emotions is conducive to accurately
associating similar subjective emotional knowledge, which can be applied to prediction and analysis.

Sentiment Modeling: Existing approaches to sentiment analysis predominantly adopt one of two
paradigms: either modeling emotional expressions as binary positive/ negative labels or neglecting the
structural complexity of raw textual content [14, 15, 16, 17]. Both strategies inadequately capture the
intricate emotional relationships between users and events. Human emotional responses to events
exhibit a multifaceted nature that transcends simple categorical labels. For instance, while a vicious
incident may universally evoke anger, it might simultaneously elicit fear, sorrow, or distraction across
diverse user groups. Such compound emotional states resist reduction to binary classifications and
necessitate richer representational frameworks. Structured modeling of these emotions facilitates the
precise association of similar subjective emotional knowledge, which can be leveraged for prediction
and analysis.

User Modeling: Current methods abstract users into static, objective user profiles including attributes
like gender, age, and occupation [18, 19, 20]. However, these attributes exert indirect and implicit
influences on subjective emotional responses to events. For example, two individuals with identical
demographic profiles may exhibit divergent emotional reactions to the same event due to differences in
personality traits. Conversely, users sharing similar personality characteristics tend to demonstrate
consistent emotional patterns and viewpoints. However, modeling personality traits, which are critical
latent factors in subjective emotion expression, presents significant challenges. First, overly granular
personality taxonomies risk amplifying intra-group variability while diminishing generalizability, as
fine-grained traits may become overly instance-specific. First, the schema of personality struggles to
balance accuracy and practicality. The more sophisticated a personality modeling system is, the smaller
the emotional differences within groups; however, the subjective knowledge derived from excessive
detail lacks representativeness due to its bias toward a limited number of individual instances. On
the other hand, users’ personality traits are implicit, dark knowledge, which is difficult to acquire and
analyze efficiently.

To address these challenges, this paper presents CogNet3 with subjective emotion knowledge, an
extension of a frame-based, multi-source knowledge fusion graph, CogNet2 [21], that integrates diverse
knowledge types. CogNet3 focuses on modeling public emotional responses to events, building upon
CogNet2’s core frame structure for enhanced knowledge representation. Specifically, we introduce three
novel frames customized for subject knowledge structuralization: Emotional Event Frame, Homogeneous
Group Frame, and Group Emotion Frame. The Emotional Event Frame captures structured information
about events (e.g., attributes, participants, and context) and their inherent emotional triggers. The
Homogeneous Group Frame models user groups with shared personality profiles, derived from analyzing
behavioral and linguistic patterns of real users. The Group Emotion Frame links these groups to their
emotional distributions toward specific events, quantifying the intensity and diversity of responses
within each group. To enable the scalable construction of CogNet3, we propose an automated, large-
scale emotional knowledge extraction framework with built-in consistency verification, ensuring the
reliability of extracted knowledge.

In summary, CogNet3 has three improvements as follows. (1) Structure. It increases three specific
frames for modeling the dynamic and complex subjective emotions of groups with different personalities
towards events. (2) Expansibility. It is automatically constructed and verified by LLMs based on
social media data. (3) Scale. It consolidates a larger scale of subjective knowledge instances. Currently,



CogNet3 increases 462,381 new event instance, 21,870 new homophilous group and the scale of group
emotion is up to 4,556,057 in total. The data, code and online demo is available at http://cognet.top/v3/.

2. Method

The frame design architecture of
CogNet3 for subjective knowledge
modeling is illustrated in the Fig-
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tion extraction. We screen popu-

lar submissions and active users from six news-related subreddits such as r/news and r/politics, and
associate their comments with corresponding emotional distribution information. Meanwhile, submis-
sions and their corresponding comments from the r/askreddit are retained to supplement the modeling
of user personalities.

2.1. Semantic Event

In terms of emotional event modeling, we define a new frame, Semantic Event, which includes frame
elements such as emotion, time, parent event, and child events. By leveraging the occurrence time of
events and their hierarchical relationships, the public emotions of each sub-event can be temporally
linked, thereby modeling the dynamic changes in public emotions corresponding to significant events.
We select submissions with more than 5 comments and use large language models (LLMs) [22, 23, 24] for
event type classification to associate them with the existing event frame system of CogNet2. Furthermore,
LLMs are employed to summarize superordinate event labels. To merge all sub-events corresponding to
a significant event, we first use vector semantic representations to perform K-Means clustering on the
superordinate event labels summarized by LLMs, selecting the label of the cluster center as the label for
the significant event of the entire cluster. Then, the LLM is used to judge each sub-event against the
parent label, removing incorrect hierarchical relationships.

2.2. Homophilous Group

Our modeling system for user personalities includes ideology, expression habits, and the Big Five
personality traits [25, 26], which can comprehensively reflect individual personality characteristics.
We associate real users’ comment records within a specified time range. For users with more than 5
historical comments in all target subreddits, we randomly select up to 100 comments in chronological
order and use LLMs to conduct in-depth rational analysis of these three aspects of personality traits for
labeling. Attributes involving fixed labels include stance tendency (far left, left, centrist, right, far right)
and stance firmness (stable, depends). Attributes involving low, medium, and high three degrees of
labels include the aggressiveness and logicality of expression, as well as the Big Five personality traits:
openness, conscientiousness, extraversion, agreeableness, and neuroticism.

'https://www.reddit.com/dev/api



2.3. Group Emotion

To model group emotions toward events, we separately model the emotional responses of crowds
to events as a Group Emotion frame, whose frame elements include events, user groups, and emo-
tional distribution. We use LLMs to conduct in-depth rational analysis of comment information from
users with labeled personality profiles among all annotated emotional events, obtaining complex and
multi-dimensional emotional distributions. For emotion modeling, we refer to Plutchik’s Wheel of
Emotions [27], labeling each of the 8 dimensions (Anger, Fear, Sadness, Joy, Disgust, Surprise, Trust,
Anticipation) with four degree labels: none, low, medium, and high. Based on the emotional information
representation of these eight dimensions, 8 types of compound emotions can be further derived automat-
ically. We associate the emotional representations analyzed from individual users’ comments with their
corresponding user personality groups. Since multiple users belonging to the same user personality
group may comment on an event, the emotional information of all users in the same personality group
is aggregated to obtain the corresponding emotional distribution. The final representation of group
emotions is in the form of a continuous distribution of 4 degrees for each of the 8 dimensions, with the
proportion of each label expressed as a percentage.

2.4. Credibility and Validity

To enhance the accuracy and rationality of the extraction results, we adopt strategies of rejection
sampling and consistency verification. If the output of the LLM does not meet the schema and format
requirements, it is automatically retried until a valid output is obtained. Among n valid outputs, a
result is considered the final output only if it receives the same annotation at least twice. In the final
construction of the knowledge graph, manual sampling and calibration are performed on the subjective
knowledge extracted by the LLM.

3. Online Platform

We provide an online platform for querying and visualizing CogNet3 (http://cognet.top/v3/). The
website includes detailed user instructions and case introductions, covering functions such as top-down
querying of event hierarchies, querying and associating user emotions with events, and analyzing the
changes in users’ emotions over associated timelines. All data of CogNet3 and its construction codes
are available for download under the CC-BY-SA 4.0 license.
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