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Abstract
Knowledge bases (KBs) are a cornerstone of the Semantic Web, yet they still struggle with scale and scope, and
their construction and curation still involve a lot of manual effort. Large language models (LLMs) have recently
emerged as powerful tools for a range of tasks, yet their potential for automated KB construction is still poorly
understood.

In this demonstrator, we showcase GPTKB, a methodology and KB entirely built from GPT-4.1. GPTKB is
constructed by massive-recursive LLM knowledge materialization [1], using over 9M API calls for $14,000 to
construct a 100M-triple knowledge base with over 6M entities.

Our demonstration focuses on two use cases: (i) Link-based KG exploration and (ii) SPARQL-based analysis
and comparison to Wikidata. The GPTKB demonstrator is accessible at https://gptkb.org.

1. Introduction

Knowledge bases (KBs) like Wikidata [2], Yago [3] and DBpedia [4] are a cornerstone of the Semantic
Web. Despite years of research efforts, public knowledge bases are still scarce, and limited in one way or
another by scale, scope, timeliness, or quality. The dominant data source for public KBs remain human
curators (Wikidata) and data integration (Yago, Wikidata) or semi-structured scraping (DBpedia), with
alternative paradigms based on text extraction (ReVerb [5], NELL [6]) not achieving comparable success.

Recently, large language models (LLMs) emerged as powerful tools for a range of tasks, and their
potential is also debated in the Semantic Web community [7]. In [1], we introduced the GPTKB
methodology for massive-recursive knowledge materialization from LLMs. The present demonstration
showcases the KB resulting from this work, GPTKB, in an interactive KB browser that includes a
SPARQL query interface.

In particular, we showcase GPTKB v1.5, a 100M triple knowledge base extracted from GPT-4.1 using
over 9M API calls, at a cost of $14,000. GPTKB v1.5 provides a unique view of the potentials offered, as
well as the challenges faced by LLM-based KB constructions. We focus on two use cases:

1. Link-based interactive knowledge graph (KG) exploration;
2. SPARQL-based analysis and comparison to Wikidata.

Table 1 gives basic KB statistics, Table 2 provides a comparison to other prominent KBs.

2. GPTKB Methodology

CEUR-WS.org/Vol-4085/paper6l.pdf

The GPTKB methodology [1] combines a recursive knowledge elicitation process with a post-hoc
knowledge consolidation phase.

Knowledge elicitation Starting from a seed subject, the LLM is prompted to return knowledge
about it in the form of triples. New named entities in these triple objects are identified via LLM-based
named-entity recognition (NER) and are enqueued for further elicitation in a recursive BFS-based graph

ISWC 2025 Companion Volume, November 2—6, 2025, Nara, Japan
Q yujia hu@tu-dresden.de (Y. Hu); tuanphong@vnu.edu.vn (T. Nguyen); shrestha.ghosh@uni-tuebingen.de (S. Ghosh);
simon.razniewski@tu-dresden.de (S. Razniewski)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

CEUR
E Workshop
Proceedings


https://gptkb.org
mailto:yujia.hu@tu-dresden.de
mailto:tuanphong@vnu.edu.vn
mailto:shrestha.ghosh@uni-tuebingen.de
mailto:simon.razniewski@tu-dresden.de
https://creativecommons.org/licenses/by/4.0/deed.en

KB #entities #assertions

Entities 6.1M

Triples 100M (120M with meta-relations) Wikimedia-related

Relations 936k (381k after canonicalization) Wikidata 113M 1.62B
Classes 220k (32k after canonicalization) Wikidata5m 5M 20M
Triple objects 59M entities, 41M literals

Avg. triples/entity 16.3 Yago 4',5 S0M 140M
Avg. label length 19.8 characters DBpedia 3.8M 5M
Subject-precision 85.3% Verifiable, 3.4% Plausible Text-extracted

11.3% Unverifiable

o

Subjects in Wikidata 43% NELL ’ 12M

Triple-precision 75.5% True, 5.0% Plausible, ReVerb : 15M
19.5% False Generative

Cost of API-calls $14,136 GPTKB vi1.5 6.1M 100M

Table 1 Table 2

Statistics of GPTKB v1.5. Size comparison of major KBs. Sources in [1].

exploration process. Constrained decoding is used to make sure that outputs stay within the triple
format.

Knowledge consolidation To address the redundancy and variance introduced during knowledge
elicitation, post-hoc knowledge consolidation is performed. In particular, we apply a greedy clustering
algorithm to iteratively merge relations and classes into more frequent ones, given a sufficiently high
label embedding similarity.

Further methodological details can be found in Hu et al. [1].

3. GPTKB Construction

Two versions of GPTKB are available, GPTKB v1.1, based on GPT-40-mini [1], and GPTKB v1.5, based
on GPT-4.1 [8]. While GPTKB v1.1 was the first proof of the viability of our methodology, the output
quality achieved was below expectations. In particular, more than 60% of the triples were estimated
to be hallucinations, and significant problems occurred with output skew, with some entities having
over 100k (virtually entirely hallucinated) triples. For v1.5, we therefore decided to use a significantly
stronger LLM. We opted for GPT-4.1, because it is among the strongest frontier models available as of
Summer 2025, and released less than 3 months ago.

Following the paradigm described in Section 2, We extracted knowledge from GPT-4.1 starting with
the seed entity Vannevar Bush. The whole process cost $14,136 for OpenAl API calls and took 18 days.
The final KB contains 100 million triples derived from 6.1 million entities in total, organized into 381k
relations and 32k classes. We provide statistics of GPTKB v1.5 in Table 1.

Since crawl parallelization distorts BFS search order, we post-hoc recomputed the shortest paths of
each node to the root, and stored this information in two meta-relations, bfsLayer and bfsParent, to
enable structural insights. To facilitate data interchange, we also converted GPTKB into RDF format,
and serialized it into Turtle syntax.

We performed two quality evaluations. An automated method based on web search, like in Hu
et al. [1], using 1,000 random triples, and a manual assessment of 100 triples. Both annotations agree
in the fraction of correct triples (75.5% and 75%), while the automated evaluation reported a slightly
higher degree of incorrect ones (19.5% versus 14% in manual). In both cases, the truth of some triples
remains undecidable, mostly, because parts of them are semantically incomprehensible.

4. GPTKB Web Provision

We provide multiple modes of access to GPTKB.



Browse Nara City Todai-ji Temple

URI: https://gptkb.org/entity/Nara_City URI: https://gptkb.org/entity/ Todai-ji_Temple
Found 314 results for “Nara”.
NARA Statements (31) Statements (51)
>
» TV Nara Predicate Object Predicate Object
» Nara La gptkbp:instanceOf gptkb:city gptkbp:instanceOf gptkb:Buddhist_temple
» Ula Nara gptkbp:area 276.84 km? gptkbp:affiliation gptkb:Kegon_school
» Nara Gil gptkbp:country gptkb:Japan gptkbp:annualEvent gptkb:Omizutori
» Nara City gptkbp:famousFor gptkb:Todai-ji_Temple gridashnme
Nara Clan gptkb:Kasuga-taisha_Shrine gptkbp:annualVisitors millions
g gptkb:Nara_Park i . I
» Yehe Nara Nara deer gptkbp:architecturalStyle  gptkb:religious_art
gptkbp:contains gptkb:Hokkedo
Lady N E
> hady Rara gptibnornded FETRER) T T gptkb:Nandaimon_(Great_South_Gate)
» Jang Nara gptkbp:capitalOf gptkb:Nara_Prefecture gptkb:Nigatsu-do
» Nara clan gptkbp:formerName  gptkb:Heijo-kyo 9ptkb:Shosoin
» Nara Line gptkbpiregion gptkb:Kansai gptkbp:coordinates 34.6889°N 135.8399°E
» Nara Park truncated gptkbp:country gptkb:Japan
» Kwon Nara gptkbp:bfsParent gptkb:Honshu - (RITEENEE oo«
» Nara Club gptkb:Nara_Park gptkbp:bfsParent gptkb:Nara_City
- .. truncated . .. gptkbp:bfsLayer 5 gptkbp:bfsLayer 6

Figure 1: Searching an entity, and subsequent link-based exploration.

Firstly, GPTKB is hosted on the https://gptkb.org web server that provides a user interface to search
entities via keyword queries and to perform link-based exploration to discover new connections and
entities. Section 5.1 and Figure 1 provide a demonstration experience of this link-based exploration.
The web interface is implemented by using the Python Django framework, and hosted on a Nginx web
server. The KB is stored in an OpenLink Virtuoso server.

Secondly, we provide a SPARQL endpoint at https://gptkb.org/query/ that supports structured queries
within a timeout window of 100 seconds.

Thirdly, we provide the RDF dump under the CC BY 4.0 license on the HuggingFace datasets library
at https://huggingface.co/Knowledge-aware-AlL

5. Demonstration Experience

We divide the demonstration experience in two parts: (1) link-based KB exploration, and (2) structured
SPARQL analytics and Wikidata comparison.

5.1. Link-based KB Exploration
Data about specific entities can be accessed via multiple routes:

1. The start page features a selection of direct links to entities such as Vannevar Bush and San
Francisco.

2. The web portal features a search field in the top-right corner, which can be used for string-based
search.

3. If an unambiguous entity name is known, one can directly access the entity’s KB entry via the
URL https://gptkb.org/entity/<NAME>.

Figure 1 shows how to initiate an entity search and continue with a link-based exploration. We start by
typing this year’s ISWC venue, Nara, which returns 314 results. Clicking on the Nara City result takes
us to its entity page. The entity Nara City contains 31 statements, and a user can click on any of the
entity objects, here for instance, Todai-ji Temple, to further explore connected entities.


https://gptkb.org
https://gptkb.org/query/
https://huggingface.co/Knowledge-aware-AI
https://gptkb.org/entity/<NAME>

Since each entity in GPTKB was identified as object from a parent entity during the BFS algorithm,
we provide this information via the bfsParent relation. Additionally, the bfsLayer relation tells us at
which layer knowledge elicitation was performed for the entity. In Figure 1, we learn that Nara City is
a child entity of Honshu, and that its triples were elicited in layer 5. Clicking on the parent entity lets a
user move up the layers of GPTKB.

5.2. SPARQL Querying for Analytics and Wikidata Comparison

A core feature of structured query languages is that they allow statistical analysis at scale. For this
purpose, the GPTKB content is stored in a Virtuoso Triple store, whose content is exposed via a SPARQL
query interface available at https://gptkb.org/query/. In the following, we show enabled analyses.

Most frequent classes Just what kind of entities does GPT know about? An overview is provided by
the following query:

PREFIX gptkb: <https://gptkb.org/entity/>
PREFIX gptkbp: <https://gptkb.org/prop/>

SELECT ?0 (COUNT(*) AS ?ofreq)
WHERE {
?s gptkbp:instanceOf ?o.
}
GROUP BY 20
ORDER BY DESC(?ofreq)

LIMIT 100

o ofreq
gptkb:person 1,077,803
gptkb:human 138,646
gptkb:film 120,497
gptkb:company 118,993
gptkb:book 111,414
gptkb:song 103,538
gptkb:fictional_character 90,499

The results are fundamentally different from, e.g., Wikidata, with a much stronger focus on
digital artifacts (films, songs), and fiction.

Nationality bias Existing KBs as well as LLM training corpora are known to be Western- and English-
language dominated [9], can this bias also be observed at the factual level of GPTKB? A quick glimpse
can be obtained by counting the number of citizens per country known to GPTKB:

PREFIX gptkb: <https://gptkb.org/entity/>
PREFIX gptkbp: <https://gptkb.org/prop/>

SELECT ?0 (COUNT(*) AS ?ofreq)
WHERE {
?s gptkbp:nationality ?o.
}
GROUP BY 20
ORDER BY DESC(?ofreq)
LIMIT 100
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o ofreq

gptkb:American 374,263
British 133,940
gptkb:French 48,294
gptkb:German 45,381
gptkb:Indian 44,872
gptkb:Canadian 41,605
gptkb:Australian 30,978
Japanese 30,453

Notably, English language nationalities occupy the top places, at a much stronger bias than
existing resources like Wikidata.

6. Related Work

Factual knowledge of LLMs is intensively researched, mostly via sample-based benchmarks or probes,
such as the seminal LAMA probe by Petroni et al. [10]. However, these works typically draw sample
from existing web resources, thereby introducing a confirmation bias that prevents the discovery of
unexpected knowledge (or errors). For example, LAMA drew 50k triples from Wikidata, Wikipedia, and
ConceptNet.

Few works have harvested LLM knowledge at scale. Nguyen and Razniewski [11] harvested one
million commonsense assertions from BART and GPT-2, based on a pre-defined subject list. Cohen
et al. [12] proposed to crawl factual LLM knowledge by recursively prompting them. Parovié et al. [13]
proposed domain-specific KB construction from LLMs, but did this only at the scale of a few hundred
thousand entities. In this demo we build upon the GPTKB methodology by Hu et al. [1], which is a
recursive methodology with judicious optimizations towards scalability, prompt-efficiency, and scoping,
via parallelization, prompt-design, and dedicated NER.

Several large knowledge bases are deployed online [14], most notably Wikidata [2], Yago [3] and
DBpedia [4]. Our web browsing and query interfaces are inspired by those.

In terms of LLM-generated datasets, the closest to ours might be Cosmopedia [15], an LLM-generated
25 billion token text corpus. However, Cosmopedia is intentionally designed to synthesize realistic-
looking but invented texts, and has no goal of collecting factual LLM knowledge.

7. Conclusion

We have presented the https://gptkb.org web demonstrator, a knowledge base browser and query
interface to GPTKB, a massive 100-million-triple KB built from GPT-4.1 using the GPTKB methodology
[1]. Our demonstrator enables experimental insights into the potential of LLMs for complementing
existing KB construction paradigms.
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