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Abstract
SPARQL federation engines allow users to query multiple SPARQL endpoints as if all RDF data were available
through a single virtual endpoint. However, executing complex SPARQL queries over federations while main-
taining fast response times remains a major challenge. In this demonstration, we present Fraw, a SPARQL
federation engine that supports sampling-based approximate query processing. This approach is particularly
useful in scenarios where response time is essential and approximate results are acceptable. We showcase the
effectiveness of our engine through an interactive SPARQL query autocompletion use case, where users receive
timely suggestions during query authoring, despite the complexity of federated querying.
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1. Introduction

SPARQL federation engines such as FedX [1], FedUP [2], and CostFed [3] allow users to query multiple
SPARQL endpoints as if all the RDF data were available through a single virtual endpoint. A federation
engine takes as input a list of SPARQL endpoints and a SPARQL query, decomposes the query into
subqueries, sends them to the relevant SPARQL endpoints, and aggregates the results [4].

However, as federations may consist of hundreds of SPARQL endpoints, each containing millions to
billions of triples, executing complex SPARQL queries over such federations while maintaining fast
response times remains a significant challenge. This limitation currently makes federated querying
unsuitable for interactive applications that require real-time responsiveness.

A representative use case of federated querying is SPARQL autocompletions [5, 6, 7], where users
receive suggestions for subjects, predicates, or objects as they type their queries, as illustrated in
Figure 1a. These autocompletion queries are dynamically generated and executed in real time to provide
relevant suggestions for the end user (e.g., query 𝑄𝑐 in Figure 1b). However, current federation engines
cannot execute such queries over large federations within the few seconds required for interactivity.
For instance, even the fastest current federation engine, FedUP, executes 𝑄𝑐 in 23 seconds.

To address these limitations, we introduce Fraw, a novel SPARQL federation engine capable of
producing partial answers within a few seconds (e.g., 𝑄𝑐 is executed in under 3 seconds). Fraw supports
Sampling-based Approximate Query Processing (S-AQP) using random walks [8]. S-AQP enables the
retrieval of partial or approximate answers rapidly, with the potential to converge towards completeness
given sufficient time. In addition to query autocompletion, S-AQP has also been utilized in use cases
such as large-scale statistics [9, 10], data summarization [11], approximate aggregations [12], knowledge
graph embeddings [13], and join ordering [14].
Fraw implements random walks using modified SPARQL operators, supporting the generation of
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(a) Autocompletion suggestions obtained in 2.97s.

PREFIX bsbm: <http://www4.wiwiss.../vocabulary/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?suggestion_variable (COUNT(*) AS ?count)
WHERE {

?offer bsbm:product ?localProductXYZ. #tp1
?localProductXYZ owl:sameAs ?suggestion_variable #tp2

}
GROUP BY ?suggestion_variable

(b) 𝑄𝑐 Autocompletion query that retrieves suggestions for
the second object. 𝑄𝑐 execution time is 23s with FedUP,
the current fastest federation engine. Too long for an
interactive scenario.

Figure 1: Autocompletion scenario for a SPARQL federation of 200 endpoints.
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Figure 2: Federation 𝐹 comprises five SPARQL endpoints 𝑣1, 𝑣2, 𝑣3, 𝑟𝑠1, 𝑟𝑠2. 𝑣1, 𝑣2, 𝑣3 are vendor sites, and
𝑟𝑠1, 𝑟𝑠2 are reviewing sites.

approximate answers within a predefined budget (i.e., a specified number of random walks). Each
successful random walk – one that satisfies the query constraints – constitutes a query result. As the
budget increases, more results are obtained, and with a sufficiently large budget, it is possible to generate
all results. While sampling techniques have been explored for single SPARQL endpoints [15, 16], they
have not yet been investigated in federated query processing settings.

In this demonstration, we illustrate the benefits of S-AQP through a federated SPARQL query
autocompletion scenario. As shown in Figure 1a, S-AQP enables an autocompletion query to be
executed in just a few seconds over the FedShop federation of 200 endpoints [17]. Colored squares
indicate the number of SPARQL endpoints in which a suggested predicate (for this completion) is
available. In addition, tooltip boxes provide details about the specific source where the suggestion is
available, along with a cardinality estimate.

To the best of our knowledge, Fraw is the first engine to introduce Approximate Query Processing for
federated SPARQL querying. Moreover, Fraw is the first system to demonstrate the practical benefits
of this approach in the context of federated query authoring through SPARQL autocompletion.

2. Fraw: Sampling-Based Approximate SPARQL Federation Engine

Consider the federation 𝐹 , simulating an e-commerce scenario where multiple rating sites and vendors
each have their own knowledge graphs (Figure 2). 𝐹 is made of vendors 𝑣1, 𝑣2, and 𝑣3 and rating sites
𝑟𝑠1, 𝑟𝑠2. 𝐹 is based on a simplified version of the FedShop schema [17]:

• Vendors include offer entities (e.g., v1:offer1), local product entities (e.g., v1:prod1) and
their corresponding global product entities (e.g., bsbm:prod1). Offers refer to local products
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(a) Union-over-join logical plan.

PREFIX <http://www4.wiwiss.../vocabulary/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT * WHERE {
?offer bsbm:product ?localProductXYZ. #tp1
?localProductXYZ owl:sameAs ?suggestion_variable #tp2

}

(b) 𝑄𝑎 query that retrieves suggestions for the 2𝑛𝑑 object.

Figure 3: FedUP’s union-over-join logical plan to process the BGP in 𝑄𝑎 over the federation of five endpoints,
𝐹 , given in Figure 2. The plan consists of the union of three subqueries, each corresponding to the evaluation of
the two triple patterns at one of the three vendor endpoints. Lighter gray (and red) highlights the choice made
by the random walk 𝑟𝑤1 (endpoint 𝑣1), while darker gray (and yellow) highlights the choice made by 𝑟𝑤2. The
logical plan is represented using FedQPL [18], with multi-union (mu), multi-join (mj), and request of a triple
pattern 𝑡𝑝𝑖 to a federation member 𝑣𝑗 (𝑟𝑒𝑞𝑡𝑝𝑖𝑣𝑗 ).

via the bsbm:product property, and each local product is linked to a global product via the
owl:sameAs property.

• Rating sites include review entities (e.g., rs1:rev1), local product entities (e.g., rs1:prod1) and
their corresponding global product entities (e.g., bsbm:prod1). Reviews are associated with a
local product via the bsbm:reviewFor property, and each local product is linked to a global
product using the owl:sameAs property.

Each federation member is running its own SPARQL endpoint that supports sampling as proposed
in [15].

We aim to sample the query 𝑄𝑎 from Figure 3b composed of 2 triple patterns 𝑡𝑝1 and 𝑡𝑝2. To do that,
Fraw first needs a decomposition and source selection for 𝑄𝑎. Fraw relies on FedUP [2] for this part.
The logical plan produced by FedUP for 𝑄𝑎 on 𝐹 is given in Figure 3a. 𝑚𝑗 is a multi-join operator
and 𝑚𝑢 is a multi-union operator. 𝑟𝑒𝑞𝑡𝑝𝑠𝑟𝑐 represents the evaluation of triple pattern 𝑡𝑝 on source 𝑠𝑟𝑐.
During query execution, 𝑚𝑗 operators from this plan can be executed respectively on 𝑣1, 𝑣2 and 𝑣3
(thanks to exclusive group optimization), but its multi-union operator is executed by the federation
engine.

While traditional federation engines must evaluate each triple pattern at all relevant sources to ensure
complete results, approximate query processing based on random walks can retrieve sample results
along with cardinality estimates, issuing significantly fewer requests to the endpoints and transferring
much less data. To do that, Fraw maps logical operators of the plan to physical operators that implement
random walks. For example, the multi-union sampled operator randomly chooses one branch of the
union for each random walk.

Consider a first random walk, 𝑟𝑤1, over the federation 𝐹 , for which Fraw randomly chooses to evalu-
ate both 𝑡𝑝1 and 𝑡𝑝2 at endpoint 𝑣1, as illustrated in Figure 3a. This combination of sources is one of three
possible options, giving it a selection probability of 1

3 . Among the two triples in 𝑣1 matching 𝑡𝑝1, one is
selected uniformly at random, with probability 1

2 . Suppose this binds the variable ?localProductXYZ
to v1:prod1, so that 𝑡𝑝2 becomes: v1:prod1 owl:sameAs ?suggestion_variable. Since 𝑣1
contains exactly one triple matching this pattern, ?suggestion_variable is bound to bsbm:prod1
with probability 1. Thus, the overall probability of this random walk is: 1

3 × 1
2 × 1 = 1

6 .
Taking the inverse of this probability yields an estimate of the BGP’s cardinality, six in this case.

Although only one random walk was performed, it provides an initial estimation of the number of
solutions. The actual cardinality is four, indicating that the estimate slightly overstates it.

Performing additional random walks could lead to new possible values for ?suggestion_variable.
For instance, consider a second random walk 𝑟𝑤2, that selects 𝑣3 as source for 𝑡𝑝1 and 𝑡𝑝2, and binds



PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?offer ?price WHERE {
?offer bsbm:product ?localProductXYZ .
?localProductXYZ owl:sameAs ♢$ProductXYZ .
?offer bsbm:vendor ?vendor .
?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#US> .
?offer bsbm:deliveryDays ?deliveryDays .
FILTER (?deliveryDays <= 3)
?offer bsbm:price ?price .
?offer bsbm:validTo ?date .
FILTER (?date > $currentDate )

}
ORDER BY xsd:double(str(?price))
LIMIT 10

Figure 4: FedShop’s template query Q10 [17] that gets offers for a product that satisfies specific requirements.
The template is instantiated, providing values for variables $ProductXYZ and $currentDate. The autocompletion
targets the second object.

variable ?suggestion_variable to bsbm:prod2. In this case, the probability of the random walk is
calculated as 1

3 × 1× 1 = 1
3 , which leads to an estimated cardinality of three.

Multiple random walks may produce duplicate values for the same variable. Moreover, as the number
of walks increases, the overall cardinality estimate becomes more accurate, converging toward the
actual value. The final estimate is typically computed as the average of the individual estimates [15].
In our demonstration, we leverage these cardinality estimates to rank autocompletion suggestions
presented to the user (Figure 1a).
Fraw 1 supports sampling for core SPARQL, i.e., Join, Optional, Union and Filter operators. Fraw

combines FedUP’s source selection and HeFQUIN’s query execution [19]. We implemented sampling in
HeFQUIN by overloading the operators with sampled versions.

To the best of our knowledge, federated query autocompletion has not been explored in previous
work. However, several approaches exist for query autocompletion in single-endpoint settings [20, 5].
For example, the approach proposed by Parra and Hogan [20] uses graph summaries to provide autocom-
pletion suggestions. While these suggestions can be generated quickly, they are over-approximations,
i.e., some answers may be incompatible with the query context and can lead to queries that return
no results. In contrast, all suggestions produced by Fraw are context-aware and lead to queries that
produce answers. QLever [5] is another system capable of efficiently producing exact answers to
SPARQL autocompletion queries. It supports interactive autocompletion in single-endpoint settings
through a query engine that leverages specialized indexing, caching, and paging optimizations. Unlike
QLever, Fraw can produce suggestions with varying degrees of completeness based on a configurable
budget. Fraw does not rely on engine-specific optimizations, but it can take advantage of them if the
engine supports approximate query processing.

3. Fraw in Action

In an autocompletion use case, as presented in Figure 1a, users type SPARQL queries over a federation
𝐹 of 200 SPARQL endpoints available in the FedShop Benchmark [17]. The 200 endpoints are made
available as virtual endpoints in a Blazegraph server extended to support sampling 2.

Suppose a user is completing template Q10 (Figure 4). At any time while writing a triple pattern of
this template, the user can request some suggestions by pressing CTRL+SPACE. According to the cursor
position, an autocompletion query 𝑄𝑐 (Figure 1b) is generated. It is composed of the current state of

1Fraw is available at https://github.com/GDD-Nantes/HeFQUIN-FRAW
2This sampling extension is available at https://github.com/passage-org/passage/tree/main/raw

https://github.com/GDD-Nantes/HeFQUIN-FRAW
https://github.com/passage-org/passage/tree/main/raw


(a) 𝑛=5 random walks. (b) 𝑛=100 random walks.

Figure 5: Suggestions for context SELECT * WHERE { ?s ♢ } obtained after executing 𝑛 random walks against
the federation given in Figure 2. With 100 random walks, the estimated cardinality of rdf:type (11,769,746) is
closer to the real cardinality (9,916,158) than with 5 random walks (16,170,160).

the query, which forms the context, and a generated triple pattern asking for the subject, predicate, or
object depending on the cursor position. Next, 𝑄𝑎 (Figure 3b), a subquery of 𝑄𝑐, is sent to Fraw to be
sampled with a budget. The budget is expressed as a number of random walks and can be set in the user
interface. When Fraw receives a query to sample, it computes a source selection to generate a plan,
then performs random walks until the budget is exhausted. Results are extended with their associated
provenance and cardinality estimation. This information can then be displayed on the user interface.

As Fraw relies on S-AQP, the results of autocompletion queries can be empty. This can happen either
because a query does not have any results on the federation, or because results do exist but were not
found within the imposed budget. By pressing CTRL+SPACE again (repeatedly, if desired), additional
information can be retrieved and aggregated with the previously obtained data. New suggestions may
appear, potentially from previously unexplored endpoints, and existing cardinality estimates may be
refined as more random walks are performed.

As random walks are intrinsically biased by frequent patterns, frequent RDF terms are more likely
to appear first as suggestion, which seems helpful in an autocompletion scenario. In other scenarios
where the user searches for an infrequent RDF term or wants to be sure that there are no results, then
executing the autocompletion query without sampling may be a better solution than waiting for the
random walks to cover most of the data.

4. Live Demonstration (https://youtu.be/RYHGjBkvEbM)

During the session, we will deploy a federation comprising 200 SPARQL endpoints generated using the
FedShop benchmark [17], including 100 vendor endpoints and 100 review site endpoints. Attendees
will be able to formulate their own queries or choose from a set of predefined scenarios, and work with
the entire federation or any of the deployed endpoints individually. In the first scenario, the user is
unfamiliar with the data exposed by the federation and wishes to explore its structure and contents.
The objective is to discover the federation members and gain insights into the properties and classes
used by each endpoint.

To support this exploration, we rely on the partial query SELECT * WHERE { ?s ♢ }, where ♢
indicates the position to complete, as illustrated in the video (https://youtu.be/RYHGjBkvEbM). We then
perform a variable number of random walks to generate suggestion batches. Increasing the number of
random walks provides a broader coverage of the federation, improving the diversity of suggestions
and the accuracy of the cardinality estimates. Figure 5 presents suggestions obtained using 5 and 100
random walks, respectively.

In the second scenario, the attendee is provided with a natural language description of a query over
the FedShop federation and is invited to formulate and execute a corresponding SPARQL query to
retrieve relevant results. For instance, the attendee might be asked to answer the following question:

https://youtu.be/RYHGjBkvEbM
https://youtu.be/RYHGjBkvEbM


SELECT DISTINCT ?sameAsOffer (GROUP_CONCAT(?country) AS ?countries) WHERE {
?offer rdf:type bsbm:Offer.
?offer owl:sameAs ?sameAsOffer.
?offer bsbm:product ?product.
?product bsbm:producer ?producer.
?producer bsbm:country ?country.

}
GROUP BY ?sameAsOffer
HAVING (!CONTAINS(STR(?countries), "US"))

Figure 6: A query that gets all the offers whose products are exclusively non-US producers, similar to FedShop’s
template query Q10.

“What are the offers whose products are exclusively produced by entities that are not from the United
States?”

Using the autocompletion feature as needed, attendees are encouraged to build queries while gradually
discovering the structure of the federation. The resulting query may resemble the one shown in Figure 6,
although it may differ in form. For example, the first triple pattern could be omitted, as any entity with
a bsbm:product property is, by definition, an offer in the FedShop schema.

5. Conclusion

We presented Fraw, the first SPARQL federation engine to support Sampling-based Approximate
Query Processing (S-AQP). We demonstrated its effectiveness for federated query authoring through
an autocompletion use case. Beyond this scenario, Fraw opens promising directions for federated
query processing, including summarization [21], approximate aggregate queries [22], and cardinality
estimation [23]. While our current demo leverages source selection plans from FedUP, an interesting
perspective is to investigate sampling strategies at the source selection stage itself.
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