
Continuation Queries: Embracing Timeouts on Public

SPARQL Endpoints

Thi Hoang Thi Pham1,*, Gabriela Montoya1, Brice Nédelec1, Hala Skaf-Molli1 and
Pascal Molli1

1Nantes Université, LS2N, UMR 6004, F-44000 Nantes, France

Abstract

Public SPARQL endpoints, such as Wikidata, provide essential access points to large-scale knowledge graphs.
However, they often suffer from strict timeouts that prevent the retrieval of complete query results. This
demonstration presents the first public deployment of passage, a SPARQL query engine that guarantees query
completeness through continuation queries. Instead of failing upon timeout, passage returns partial results along
with a SPARQL continuation query capable of retrieving the missing results. These continuation queries can
be chained iteratively until complete results are obtained. For this demo, attendees can interact with a passage
loaded with 13B triples from Wikidata 2025, and observe in detail its operation during their query execution.

Keywords

Semantic Web, Public Knowledge Graph, SPARQL Endpoint, Continuation Queries.

1. Introduction

Public SPARQL endpoints, such as Wikidata1, offer valuable access to large-scale knowledge graphs.
However, to remain responsive under heavy load, they enforce fair-use policies, including timeouts
and result size limits [1], to prevent a single query from monopolizing server resources. Consequently,
many queries fail to complete, returning partial or no results at all. For instance, consider the query
𝑄cite in Figure 1a, which retrieves pairs of articles that cite each other. When executed on the official
Wikidata endpoint2, this query times out after 60 seconds and fails to return complete results. The
inability to ensure query completeness undermines both the reliability and usability of public SPARQL
endpoints.

In a recent paper [2], we introduced SPARQL continuation queries, a novel approach to overcoming
timeout limitations while preserving compatibility with existing SPARQL infrastructure. The core idea is
simple: when a query exceeds server-imposed limits, the server returns the partial results and a SPARQL
continuation query able to retrieve the missing results. This process can be repeated, allowing users to
recover complete answers by chaining SPARQL continuation queries. To the best of our knowledge, our
approach is the first to ensure completeness, responsiveness, and, more importantly, full compliance
with the SPARQL protocol.

In this demo, we present the first public deployment of SPARQL continuation queries over real-world
data. The passage server embeds two SPARQL query engines within a single Java Virtual Machine: the
standard blazegraph query engine and the continuation-enabled passage query engine. Both query
engines operate on a shared blazegraph journal file (.jnl), ensuring that both query engines access the
same physical storage and indexes, while exposing separate SPARQL endpoints.
The blazegraph query engine, which powers the Wikidata Query Service, fully supports SPARQL 1.1
but enforces a 60-second timeout that can yield incomplete results for complex queries. In contrast, the

ISWC 2025 Companion Volume, November 2–6, 2025, Nara, Japan
*Corresponding author.
$ thi-hoang-thi.pham@univ-nantes.fr (T. H. T. Pham); gabriela.montoya@univ-nantes.fr (G. Montoya);
brice.nedelec@univ-nantes.fr (B. Nédelec); hala.skaf@univ-nantes.fr (H. Skaf-Molli); pascal.molli@univ-nantes.fr (P. Molli)
� 0000-0003-0176-2245 (T. H. T. Pham); 0000-0001-5835-0335 (G. Montoya); 0000-0003-4238-5060 (B. Nédelec);
0000-0003-1062-6659 (H. Skaf-Molli); 0000-0001-8048-273X (P. Molli)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://query.wikidata.org
2https://query-scholarly.wikidata.org/, following the recent split of Wikidata.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:thi-hoang-thi.pham@univ-nantes.fr
mailto:gabriela.montoya@univ-nantes.fr
mailto:brice.nedelec@univ-nantes.fr
mailto:hala.skaf@univ-nantes.fr
mailto:pascal.molli@univ-nantes.fr
https://orcid.org/0000-0003-0176-2245
https://orcid.org/0000-0001-5835-0335
https://orcid.org/0000-0003-4238-5060
https://orcid.org/0000-0003-1062-6659
https://orcid.org/0000-0001-8048-273X
https://creativecommons.org/licenses/by/4.0/deed.en
https://query.wikidata.org
https://query-scholarly.wikidata.org/

(a) The query 𝑄cite times out after 60 seconds on the
official Wikidata endpoint and returns no results to
the user.

(b) Using passage, the query 𝑄cite completes with 37
SPARQL continuation queries, taking 37 minutes
to retrieve its 1210 results.

Figure 1: The query 𝑄cite retrieves articles from the journal PLOS One that cite each other. Articles can cite

each other when they are submitted and published in close time frames.

passage query engine currently supports only core SPARQL [3] but enables query continuation. This
configuration allows users to easily choose which engine to use for executing their SPARQL queries:
passage or blazegraph.

As part of the demonstration, the attendees will be able to query a public passage server containing
the 13B statements of Wikidata (as of February 13th, 2025), showcasing:

• Execution of SPARQL queries that time out on blazegraph but complete successfully on passage
using continuations;

• Live inspection of SPARQL queries through the execution of successive SPARQL continuation
queries. Each timeout offers an opportunity to monitor progress and estimate completion time;

• Integration with the comunica smart client [4], enabling support for SPARQL 1.1 queries beyond
passage’s core SPARQL capabilities. The client decomposes the queries: core SPARQL subqueries
are delegated to the passage engine, while unsupported operators are executed client-side.

2. Continuation Queries at Work

Timeouts play a crucial role in protecting shared infrastructures. An engine that supports SPARQL
continuation queries does not eliminate timeouts; instead, when a query execution is interrupted, the
engine returns partial results and computes a new SPARQL capable of retrieving the missing answers,
called a SPARQL continuation query. A continuation query can itself be interrupted, leading to yet
another continuation query. Assuming that each continuation query makes progress, we have proven
that there exists a finite sequence of continuation queries that returns complete and correct results [2].

This demo highlights the sequences of SPARQL continuation queries that occur during query ex-
ecution, as illustrated in Figure 2. On the left is the original query 𝑄cite, which was executed for 1
minute and returned 64 results. In the center is the first continuation query, also executed for 1 minute,
returning 26 results. On the right is the second continuation query, which returned 23 results after
another 1 minute of execution. At this point, the results are still incomplete, and more continuation
queries must be executed to retrieve the remaining answers.

A key point to note is that, although the engine automatically generates each continuation query to
compute the remaining work, continuation queries are standard SPARQL queries that any user can
read and understand. A human user can inspect it to determine the processed parts of the query and
estimate the remaining time required to complete the query execution. Continuation queries help open
the black box of SPARQL query processing, allowing users to better understand and reason about how
their queries are being executed.

Figure 2: The query 𝑄cite requires multiple continuation queries. After 60 seconds, the initial query (left) returns

64 partial results and a SPARQL continuation query (center) containing additional OFFSET, BIND, and UNION
clauses. This continuation query is then executed and returns 26 partial results, along with the continuation

query (right). The process continues until the endpoint no longer returns a continuation query.

Understanding a continuation query. Let us focus on the first continuation query of 𝑄cite, shown
in the center of Figure 2. The remaining work is primarily determined by the two OFFSET clauses
found in the two parts of the UNION: (i) The second part of the UNION re-executes the original query,
under the assumption that all articles of PLOS One have already been processed up to OFFSET 4378.
The remaining task is therefore to process all PLOS One articles beyond OFFSET 4378. (ii) The first part
of the UNION handles the processing of the 4378𝑡ℎ article, i.e., wd:Q24282614. passage has already
processed all cited articles up to OFFSET 46. The remaining task is therefore to process all articles cited
by wd:Q24282614 beyond OFFSET 46.

An inspection of the second part of the UNION reveals the join order selected by passage. Since
suboptimal join orders are often a major cause of slow SPARQL query execution, it is important to
assess whether the chosen order is appropriate:

1. First, passage scans the innermost triple pattern {?article1 wdt:P1433 wd:Q564954} to
retrieve the articles published in the journal PLOS One. Starting with this triple pattern is crucial,
as it has the lowest cardinality (Figure 1b).

2. Then, each value of ?article1 is injected into the triple pattern {?article1 wdt:P2860
?article2} to retrieve the articles cited by ?article1.

3. Finally, if ?article1 and ?article2 are distinct, passage evaluates the pattern {?article2
wdt:P2860 ?article1} to check whether ?article2 also cites ?article1.

Therefore, the join order is well chosen, and the long execution time is primarily due to the size of the
search space.

Estimating remaining time. Users are often interested in estimating how long they will need to wait
for their query to complete fully. In this context, the continuation query, which represents the remaining
work, can be used to estimate the remaining execution time. With the first continuation query of 𝑄cite
shown in the center of Figure 2, the execution time of the first part of the UNION is marginal; an article
rarely cites millions of others, and 46 citations is already a relatively high number. The primary factor
is OFFSET 4378, applied to the first triple pattern. Given that there are 252,130 articles in total, and 4378
have been processed in one minute, we can roughly estimate the remaining time as 252,130

4378 − 1 ≈ 56
minutes. This is a coarse estimate, since it does not consider citation distribution biases, but it can be
refined after each continuation query. In this case, passage terminates the execution of this query in
~37 minutes, after issuing 37 continuation queries. 3

3𝑄cite was executed after clearing the server’s cache.

(a) passage x comunica query plan (b) Example of passage subqueries.

Figure 3: The decomposition of query 𝑄top is complex, involving multiple service calls linked by comunica’s

physical operators. Each service query is subject to continuation. The query execution completed in 19 minutes,

providing the 10 expected results.

Technical view on continuation queries. From a technical perspective, one might be surprised
to see OFFSET without ORDER BY, as OFFSET is generally unreliable when the order of results is not
explicitly defined [5]. However, passage extensively uses subqueries comprising a single triple/quad
pattern with an offset: by assuming a deterministic evaluation order for such patterns, the resulting
triples/quads are always produced in the same order and the OFFSET actually allows skipping results
already produced. Although passage uses the blazegraph engine to satisfy this assumption by
scanning through its augmented B+Tree indexes (the deterministic order is that of the chosen index),
other SPARQL engines based on other indexing data structures (e.g., HDT [6]) can provide deterministic
ordering on single triple/quad patterns.
A second remark concerns the evaluation time of a triple/quad pattern with an OFFSET: are all preceding
results read and discarded, or are they efficiently skipped? Again, passage uses blazegraph’s indexing
augmented B+Trees to initialize the departure point of each triple/quad pattern scan. A counter
maintained within each node of the indexes allows passage to directly navigate to the desired offset in
logarithmic time. Consequently, even on large datasets, the impact of OFFSET on triple/quad pattern
evaluation remains marginal. It is worth noting that passage could use other SPARQL engines providing
such a convenience, such as HDT [6].

In summary. Before passage, a timeout was an event to dread; it meant the query had failed, and the
results would not be delivered as expected. With passage, a timeout becomes an event to embrace: it
marks the moment when the first results arrive, progress becomes measurable, and the remaining work
can be estimated.

3. passage x comunica: Beyond Core SPARQL

Currently, passage provides continuation queries only for core SPARQL queries, i.e., queries with
projections, triple/quad patterns, joins, unions, optionals, binds, and filters [3]. passage cannot directly
execute more complex queries like the query 𝑄top depicted in Figure 3a that retrieves the top 10 brightest
stars, since this query includes a property path, an ORDER BY, and a DISTINCT modifier.

With passage x comunica, we extended the comunica smart client with passage to support full
SPARQL 1.1 queries while ensuring termination. We declared the capacities of the passage endpoint
within comunica, enabling the client to decompose SPARQL queries so that only supported subqueries
are delegated to passage.

Figure 3 shows the physical plan of 𝑄top using passage x comunica. Each green square represents
a call to passage. When multiple green squares appear on the same line, this indicates that several
continuation queries were required to complete a subquery. The plan involves several inner joins, and

Figure 4: passage (/passage) and blazegraph (/sparql) run on the same server and the same data. Users can

enjoy the best of both worlds.

the query is processed as follows:
1. comunica transitively retrieves all subclasses (wdt:P279) of stars (wd:Q523) from the passage

server;
2. For each found subclass ?x, the original query 𝑄top is rewritten by replacing the property path

pattern with the triple pattern {?star wdt:P31 ?x};
3. The resulting basic graph pattern now conforms to core SPARQL and can be executed in full by

passage, as shown in Figure 3b;
4. The ORDER BY and LIMIT clauses are applied as solution modifiers on the aggregated results

and executed client-side by comunica.
Executing 𝑄𝑡𝑜𝑝 directly on Wikidata results in a timeout. However, with passage x comunica, the

query completes successfully in 19 minutes. It required 689 service queries, transferred 683KB from the
client to the server, and 987KB from the server to the client, ultimately retrieving the top 10 brightest
stars: the Sun, SN 1054, Tycho’s Supernova, Sirius A, Sirius, Canopus, Alpha Centauri, Arcturus, Alpha
Centauri A, Vega. 4 The decomposition may generate many service calls, but termination is guaranteed.

4. Demonstration (https://youtu.be/_yFwC0UAeqA)

We deployed a public endpoint containing the 13B statements of Wikidata as of February 13th, 2025
in a 1.8TB blazegraph journal. The server embeds two SPARQL query engines within a single Java
Virtual Machine: the standard blazegraph query engine5 and our passage query engine6.

We deployed a web user interface available at https://passage-org.github.io/passage-comunica/. It
includes an interactive widget that displays the passage x comunica physical plan, updated in real-time.
Users can type their SPARQL queries or choose among query examples from Wikidata or WDBench [7]. 7

Thanks to this setup, we can fairly compare blazegraph and passage side by side on the same
hardware and data, as illustrated in Figure 4. Both engines can execute the same query; users need to
change the endpoint URL: use the /sparql suffix for blazegraph and /passage for passage.

If your SPARQL query can be executed with blazegraph, we recommend using it. Otherwise, switch
to passage to retrieve partial results, observe progression, diagnose issues such as suboptimal join
orders, and estimate whether the final results are worth waiting for. There is no need to choose one
over the other; this setup offers the best of both worlds.

The demo is fully live, and users are encouraged to submit their queries and request explanations
about the results and execution behavior.

4𝑄top was executed after clearing the server’s cache.
5https://10-54-2-226.gcp.glicid.fr/wikidata/sparql with a 60-second timeout.
6https://10-54-2-226.gcp.glicid.fr/wikidata/passage with a 60-second timeout and 10,000 results limit.
7The web interface, as well as endpoints with smaller datasets, such as WatDiv [8] or WDBench [7], can also be deployed
locally. All code is publicly available on the GitHub platform at https://github.com/passage-org.

https://youtu.be/_yFwC0UAeqA
https://passage-org.github.io/passage-comunica/
https://10-54-2-226.gcp.glicid.fr/wikidata/sparql
https://10-54-2-226.gcp.glicid.fr/wikidata/passage
https://github.com/passage-org

5. Conclusion

passage redefines the meaning of timeouts during SPARQL query processing. Rather than signaling
failure, it becomes an opportunity: the moment when partial results become visible, offering users both
progress and perspective. Importantly, in our deployment, passage and blazegraph are not alternatives
but complements; they run on the same server, the same data, and combine their strengths in a unified
system.

Our roadmap includes extending support in passage for more advanced SPARQL features, such as
aggregates (COUNT/COUNT DISTINCT), GROUP BY, and property paths. In addition, we plan to enhance
performance through parallel execution by partitioning single triple/quad patterns using OFFSET with
LIMIT.

Acknowledgments

We would like to thank Erwan Boisteau-Desdevises and Izzedine Issa Ahmat for their valuable support
and contributions to this work. This work is supported by the French ANR project MeKaNo – Search
the Web with Things (ANR-22-CE23-0021).

Declaration on Generative AI

During the preparation of this work, the authors used https://chatgpt.com in order to: Grammar and
spelling check. After using this tool, the authors reviewed and edited the content as needed and take
full responsibility for the publication’s content.

References

[1] C. B. Aranda, A. Hogan, J. Umbrich, P. Vandenbussche, SPARQL Web-Querying Infrastructure:
Ready for Action?, in: The Semantic Web - ISWC 2013 - 12th International Semantic Web Conference,
Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part II, volume 8219 of Lecture Notes in
Computer Science, Springer, 2013, pp. 277–293. doi:10.1007/978-3-642-41338-4_18.

[2] T. H. T. Pham, G. Montoya, B. Nédelec, H. Skaf-Molli, P. Molli, Passage: Ensuring Completeness and
Responsiveness of Public SPARQL Endpoints with SPARQL Continuation Queries, in: Proceedings
of the ACM on Web Conference 2025, WWW ’25, Association for Computing Machinery, New York,
NY, USA, 2025, p. 47–58. doi:10.1145/3696410.3714757.

[3] J. Pérez, M. Arenas, C. Gutiérrez, Semantics and complexity of SPARQL, ACM Trans. Database
Syst. 34 (2009) 16:1–16:45. doi:10.1145/1567274.1567278.

[4] R. Taelman, J. V. Herwegen, M. V. Sande, R. Verborgh, Comunica: A Modular SPARQL Query Engine
for the Web, in: The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference,
Monterey, CA, USA, October 8-12, 2018, Proceedings, Part II, volume 11137 of Lecture Notes in
Computer Science, Springer, 2018, pp. 239–255. doi:10.1007/978-3-030-00668-6_15.

[5] C. B. Aranda, A. Polleres, J. Umbrich, Strategies for Executing Federated Queries in SPARQL1.1,
in: The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part II, volume 8797 of Lecture Notes in Computer Science,
Springer, 2014, pp. 390–405. doi:10.1007/978-3-319-11915-1_25.

[6] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, M. Arias, Binary RDF representation
for publication and exchange (HDT), J. Web Sem. 19 (2013) 22–41. doi:10.1016/j.websem.2013.
01.002.

[7] R. Angles, C. Buil-Aranda, A. Hogan, C. Rojas, D. Vrgoč, WDBench: A Wikidata Graph Query
Benchmark, in: The Semantic Web – ISWC 2022 - 21st International Semantic Web Conference,
Virtual Event, October 23–27, 2022., Springer-Verlag, Berlin, Heidelberg, 2022, p. 714–731.

https://chatgpt.com
http://dx.doi.org/10.1007/978-3-642-41338-4_18
http://dx.doi.org/10.1145/3696410.3714757
http://dx.doi.org/10.1145/1567274.1567278
http://dx.doi.org/10.1007/978-3-030-00668-6_15
http://dx.doi.org/10.1007/978-3-319-11915-1_25
http://dx.doi.org/10.1016/j.websem.2013.01.002
http://dx.doi.org/10.1016/j.websem.2013.01.002

[8] G. Aluç, O. Hartig, M. T. Özsu, K. Daudjee, Diversified Stress Testing of RDF Data Management
Systems, in: The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva
del Garda, Italy, October 19-23, 2014. Proceedings, Part I, volume 8796 of Lecture Notes in Computer
Science, Springer, 2014, pp. 197–212. doi:10.1007/978-3-319-11964-9_13.

http://dx.doi.org/10.1007/978-3-319-11964-9_13

	1 Introduction
	2 Continuation Queries at Work
	3 passage x comunica: Beyond Core SPARQL
	4 Demonstration (` `%%%`#`&12_`__~~~ॲ甀攀
	5 Conclusion

