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Abstract

Android mobile devices are an ideal target for malware attacks due to their widespread use and open source
nature. This study discusses the issues posed by Android malware and introduces a new Convolutional Neural
Network (CNN)-based malware detection solution. Using static analysis, the suggested approach converts binary
executables into pixel images for classification, separating dangerous from benign software. The study uses
four CNN architectures: ResNet50v2, ResNet101v2, VGG16, and InceptionV3, using a dataset of 7,172 malware
and 10,442 goodware samples. The ResNet50v2 model outperformed expectations, attaining great accuracy and
balance. This study illustrates the potential of CNNs in improving Android malware detection and underscores
the importance of novel methods to cybersecurity.
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1. Introduction

The smartphone has become an essential part of our daily lives, and Android stands as the dominant
operating system in the smartphone market. Projections indicate that the global population of smart-
phone users is expected to expand significantly, reaching an impressive 7.7 billion by the year 2028
[1]. This upward trend in smartphone usage highlights the growing importance of these devices in our
daily lives. Moreover, when we consider mobile operating systems, Android emerges as the dominant
player in the market. As of November 2023, Android held a substantial market share of 70.5% [2],
demonstrating its widespread adoption and influence in the mobile technology landscape. Android’s
open nature allows users to download apps from either the official Google Play Store or alternative
third-party app markets. Nevertheless, this very popularity and openness have rendered Android a
magnet for malicious intent. In particular, the platform’s vast user base and versatile environment have
made it an attractive target for cyber attackers [3, 4]. This heightened risk stems from the fact that
Android devices can easily fall victim to the insidious infiltration of malicious software, often referred
to as malware. Such malware, once introduced into the Android ecosystem, can swiftly disseminate
and compromise the integrity of otherwise benign Android devices, posing a substantial threat to the
security and privacy of users. As a result, the Android community and security experts must remain
vigilant in their efforts to combat and mitigate the impact of these digital threats. Cyber attackers
are motivated by a variety of factors, ranging from seeking rewards and self-validation to indulging
in entertainment or using their skills as a form of digital weaponry [5]. As these motives drive their
actions, it’s crucial to consistently evolve and innovate in the realm of detecting Android malware.
With the expanding landscape of mobile technology and the increasing sophistication of these cyber
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threats, the development of new, robust methods for identifying and combating such threats becomes
an ongoing, critical mission for cybersecurity experts and the tech community at large [6].
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Figure 1: CNN malware detector architecture overview

2. Related Works

Android malware detection has been a focus of numerous studies, reflecting the growing concern over
the security of mobile devices. Traditional malware detection methods rely heavily on signature-based
techniques, which, while effective, are limited by their inability to detect new or rapidly evolving threats.
To address this issue, machine learning (ML) and deep learning (DL) techniques have gained popularity
in recent years.

One of the early approaches in malware detection using ML was based on feature extraction from
static and dynamic analyses. Arp et al. [7] introduced Drebin, a lightweight Android malware detector
using static analysis. They extracted permissions, API calls, and other features from APKs, achieving a
high detection rate. Although Drebin was effective, it faced limitations in dealing with new variants of
malware that could evade signature-based detection methods.

In recent years, deep learning has emerged as a powerful alternative due to its ability to learn hierar-
chical representations. Chaymae and Khalid [8] explored the use of Convolutional Neural Networks
(CNNs) for Android malware detection by transforming APK files into grayscale images. This method
highlighted the capability of CNNs to analyze spatial characteristics within binary data, paving the
way for the approach used in this study. Similarly, Hou et al. [9] proposed Deep4MalDroid, a CNN-
based model that analyzed images generated from system call sequences, achieving notable success in
detecting malware families.

Other studies have employed CNNs in combination with other architectures. For example, Grosse
et al. [10] demonstrated a hybrid model incorporating Recurrent Neural Networks (RNNs) to capture
sequential information from API calls while using CNNs for spatial feature extraction. This hybrid
approach achieved significant accuracy but also required substantial computational resources, making
it less practical for real-time deployment.

The effectiveness of CNNs for malware detection is further supported by Zhou et al. [11], who used a
CNN-based model trained on binary and opcode sequences, obtaining high accuracy rates. These studies
reinforce the idea that CNNs can identify complex patterns within static representations of malware,
which are challenging to detect with conventional methods. However, the need for computational
efficiency and generalizability remains a central challenge for applying CNNs in real-world settings.

Our study builds upon these findings by using static analysis to convert APK binaries into pixel
images. By evaluating multiple CNN architectures, we demonstrate the efficacy of these networks in
differentiating malicious from benign applications. This paper extends previous work by focusing on
multiple architectures, including ResNet50v2, ResNet101v2, VGG16, and InceptionV3, and by evaluating
their relative performances, which provides a comprehensive comparison to aid future researchers in

the field.



3. Background

Malware presents a significant challenge within the open-source Android operating system. It’s feasible
to disassemble an APK file, make alterations to its code, reassemble it, append code triggered by certain
events, repackage, sign it, and subsequently release it to the market through reverse engineering tools
[12]. This process involves a sequence of steps that can manipulate an application’s code, potentially
creating security vulnerabilities and allowing for the distribution of malicious software within the
Android ecosystem. Malware creators employ a technique known as piggybacking [13] to craft malicious
replicas of established software. According to research conducted by Zhou and Jiang [14], approximately
86 percent of Android malware is introduced through piggybacking. While there are indeed other forms
of malware, piggybacking stands out as a notably convenient method to implant and execute malicious
code on an Android device. This method leverages the familiarity and trust associated with legitimate
applications, exploiting them by embedding malicious code within, which is often challenging to detect
until it’s activated on a user’s device [15]. The prevalence of this approach underscores the importance
of stringent security measures to protect against such deceptive tactics in the Android environment. The
central focus of this paper lies in a comprehensive analysis of the limitations and opportunities inherent
in leveraging neural network algorithms to enhance cyber threat detection systems designed for Android
platforms. By delving into this subject matter, the paper aims to contribute novel perspectives that can
guide the development of more effective practices for constructing models and tools aligned with the
evolving landscape of cybersecurity policies and requirements. To ensure clarity in our examination, it
becomes pertinent to revisit and reinforce the definitions of the fundamental concepts elucidated in
this paper.

APK. The Android APK (Android Package) file format serves as a distribution package, encompassing
various resources such as layout files and images stored within directories like assets and res, alongside
the Android VM bytecode file classes.dex [16]. The DEX (Dalvik Executable) file is a crucial component
of Android applications, containing the bytecode that the Android Runtime (ART) or the Dalvik Virtual
Machine (DVM) executes. The DEX format is optimized for efficient execution on resource-constrained
mobile devices, making it a fundamental part of Android app development [17]. Additionally, DEX files
support features like dynamic class loading and memory-efficient storage, contributing to the overall
performance and flexibility of Android applications. Understanding the structure and content of DEX
files is essential for developers and security researchers alike, as it provides insights into the inner
workings of Android apps and aids in tasks such as optimization, analysis, and security assessment.

Malware. Malware, also known as malicious code and malicious software, is a program that is
surreptitiously inserted into a system, often with the intention of compromising the confidentiality,
integrity, or availability of the victim’s data, applications, or operating system. Its purpose may extend
to causing annoyance or disruption to the victim. In contemporary computing landscapes, malware has
evolved into the most substantial external threat for numerous systems, inflicting widespread damage
and posing significant challenges to cybersecurity [18] [19] [20].

Malware detection. A malware detector is a specialized program crafted to identify and flag
malicious programs or code within a system [21] [22]. In a broader conceptualization, the role of a
malware detector can be encapsulated in a function, as defined below [20]:

malicious if p contains malicious code;
D(p) = { benign if p does not contain malicious code;
undecidable if D fails to determine p.

where D signifies the decision function, serving the crucial role of discerning whether a given
application or program p falls into the category of benign or malicious.



4. CNN malware detector

The approach for implementing our malware detector is in line with most of the criteria established in
the existing literature.

4.1. Architecture overview

The illustrated malware detector is essentially a Convolutional Neural Network algorithm designed to
solve a binary image classification problem with two classes: "malware" and "goodware". In this context,
"goodware" denotes any benign program or executable that operates without any deliberate malicious
intent.

The setup aims to minimize the occurrence of false negatives during the prediction phase by adopting
a preventive and more conservative approach. Figure 1 depicts the architecture of the malware detector.
The initial phase involves preprocessing, which converts binary executables into pixel images. Once
the image samples are prepared, they are inputted into the trained CNN architecture, which provides
classification scores used to determine the class of the analyzed sample.

4.2. Main properties

The developed malware detector has the following main properties:

« It employs static analysis: the executable files are examined without being executed. The relevant
information used to make decisions is extracted directly from the content of the DEX files.

» Signature detection: the detector relies on the knowledge gained during the machine learning
training phase, where it learned specific features and signatures of existing malware from a given
dataset.

« Similarities with anomaly detection: this detector learns not only the signatures of the malware
samples from a dataset but also the features of harmless goodware. It then makes predictions
based on this learning. This behavior is similar to several anomaly detection methods.

« Utilizes images rather than flat byte strings as input.

Although it must be stressed that one cannot rely solely on CNNs for malwere detection, it is worth
noting that the present work fully recognizes the novelty and usefulness of CNNs in the context of
malware detection having achieved an excellent result.

CNN Dimension Classes Precision Recall F1-score Aczsrgcy

. Malware 97,43% 97,99% 97,71%

InceptionV3 250x350x3 97,24%
Goodware 97,04% 96,22% 96,63%
Malware 98,04% 98,82% 98,43%

ResNet50v2 250x300x3 98,11%
Goodware 98,19% 96,99% 97,59%
Malware 98,12% 98,02% 98,07%

ResNet101v2 | 250x300x3 97,65%
Goodware 97,18% 97,31% 97,25%
Malware 96,86% 97,19% 97,03%

VGG16 250x350x3 96,35%
Goodware 95,84% 95,37% 95,60%

Table 1

Results of trained CNN models

4.3. Implementation

For this study, we selected four of the most popular CNN architectures: ResNet50v2, ResNet101v2,
VGG16 and InceptionV3. They were implemented using the Keras and TensorFlow frameworks for
Python 3.10.13 (64-bit).



4.4. Dataset and Training

The malware APK samples were downloaded and selected from VirusShare.com, a repository of malware
samples [23]. On the other hand, the goodware samples collection were collected by self-produced web
scraping tools from en.uptodown.com. Therefore, at this point, the dataset consists entirely of APKs:

« 7172 malware samples
+ 10442 goodware samples

< Dataset: 17614 samples (2 classes) -
Training Test
Trainset: 14091 samples (80%) Testset: 3523

samples (20%)

Figure 2: Dataset splitting

To create a dataset suitable for training a CNN learning algorithm, we selected DEX file from APKs
to turn them into RGB images through tools written by us: each byte from the DEX file is mapped
to a pixel which has each color component labelled from value 0 to value 255. For the training task,
it is necessary to divide the dataset into training data and testing data. For this study, the dataset is
splitting into two subset: the training set (80%) and the test set (20%). The validation test is derived
by TensorFlow directly from the test split. Table 1 shows the results for evaluating the prediction
performance of CNN models trained on test set samples. The results clearly show that the ResNet50V2
model is superior in terms of accuracy and balance across criteria. The difference in performance
between ResNet50V2 and ResNet101V2 is minor, demonstrating that increasing model depth does not
always result in considerable improvements in this particular scenario. Other considerations to consider
are training time and computing complexity, and shallower models like VGG16 may nevertheless play
an essential role in resource-constrained applications.

5. Future Works

To address the limitations identified in this work, several directions for future work can be considered.

Incorporating dynamic analysis Future research could integrate dynamic analysis to supplement
static detection. By analyzing runtime behaviors, such as API calls, system logs, and network traffic, a
more comprehensive detection system can be developed. A hybrid model combining static and dynamic
analysis may enhance resilience against evasion techniques and improve detection accuracy for new
malware variants.

Adversarial Robustness As malware authors continually evolve their techniques to evade detection,
future work should focus on improving adversarial robustness. Techniques such as adversarial training,
which involves exposing the model to adversarial examples during training, can help enhance the
model’s ability to detect obfuscated malware. Additionally, incorporating model-agnostic defense
strategies may improve generalizability against a wide range of evasion techniques.

Development of Real-Time Detection Systems To improve the practical application of CNNs in
malware detection, future work could focus on the development of real-time detection systems that can
operate on-device. This would require optimizing the inference process and minimizing latency. Edge
computing and federated learning are promising areas for enabling on-device detection, allowing for
real-time malware detection without compromising user privacy or device performance.



While this study highlights the potential of CNNs for Android malware detection, addressing these
areas in future research can enhance the effectiveness, adaptability, and efficiency of CNN-based
solutions. By continuing to innovate and refine these methods, researchers can contribute to building
more robust defenses against the ever-evolving landscape of mobile malware.

6. Human-in-the-Loop and Explainability

While the present study emphasizes the efficacy of CNN-based static analysis for Android malware
detection, integrating human expertise into the system’s workflow remains a crucial direction for
practical deployment. Malware detection is rarely a fully automated task; instead, it often requires
security analysts, system administrators, or application developers to interpret the results and decide
on appropriate mitigation strategies. Designing systems that support human decision-making ensures
that automated solutions augment, rather than replace, expert judgment [24].

6.1. Human-in-the-Loop Interaction

The proposed system supports human decision-making by providing, along with its binary classification
(malware or goodware), a confidence value associated with each prediction. When this value falls below
a predefined threshold, the output is flagged as uncertain, signaling the need for human review. This
allows analysts to focus on the most ambiguous cases, reducing the risk of misclassification. Moreover,
these uncertain samples can be re-labeled by human experts and reintegrated into the training pipeline,
enabling the system to continuously improve through human feedback [25]. This interaction creates a
feedback loop where Al assists the human operator in prioritizing suspicious samples, while humans
contribute to refining the AI's knowledge base.

6.2. Explainability and Transparency

At present, the proposed CNN-based approach does not incorporate explicit explainability features, and
therefore operates largely as a black box. While this does not hinder its predictive accuracy, it limits
user trust and interpretability. Future work could address this limitation by integrating explainability
methods such as saliency maps, Class Activation Maps (CAMs), or feature attribution, which would
make the internal decision-making process more transparent [26]. Such methods could help analysts
better understand why a particular application is flagged as malicious, strengthening accountability
and enabling more informed human-AI collaboration.

6.3. Usability Considerations

Beyond accuracy, usability remains a key factor in the adoption of Al-driven malware detection. Present-
ing results through intuitive dashboards that highlight both classification confidence and uncertainty
status would empower security analysts to make better decisions, even without deep technical expertise.
By combining clarity with confidence thresholds, the system ensures that users can quickly distinguish
between highly reliable results and those requiring manual inspection. Human-centered design in this
context improves both effectiveness and trust in Al-assisted cybersecurity [27].

6.4. Collaborative Defense and Workshop Relevance

The human-in-the-loop approach also facilitates collaborative defense strategies, where analysts across
organizations can share uncertain cases, human-validated samples, and insights derived from AI outputs.
This iterative process exemplifies the principles of the COllaboration and Learning through Symbiotic
Artificial Intelligence (COL-SAI) workshop: fostering symbiotic co-adaptation between humans and
Al systems. By allowing Al to filter and prioritize tasks while relying on humans for contextual
understanding and validation, the proposed framework supports co-creation and continuous learning.
In this way, the system not only strengthens malware detection but also advances the broader goal of



designing Al tools that enhance human decision-making, adapt through human feedback, and enable
collaborative problem-solving in cybersecurity.

By explicitly incorporating decision thresholds, human oversight, and potential explainability fea-
tures into its design, this work moves toward Al systems that are trustworthy, symbiotic, and adapt-
able—qualities that resonate strongly with the objectives of the COL-SAI workshop.

7. Conclusion

This work revealed the efficiency of Convolutional Neural Network (CNN) models in detecting malware
on Android systems. Specifically, the ResNet50V2 model stood out for its accuracy and overall perfor-
mance balance, demonstrating that increased model depth does not always result in a considerable
boost in performance. The adopted process, which entails transforming DEX files into RGB images,
has enabled us to fully harness the potential of CNNs for binary classification of malware and benign
software.

Possible future advancements in this research include refining the model’s architecture by investi-
gating and testing new neural network structures, such as deep neural networks or recurrent neural
networks, to see whether they can improve malware detection skills. To improve the model’s general-
ization and resilience, the dataset should be expanded with more samples of malware and goodware
from other sources. Another major development area is real-time analysis, which involves creating
detection systems that can examine the behavior of programs during execution and combining dynamic
analysis approaches with the static analysis approach utilized in this study.

In addition, this work highlights the importance of integrating human-in-the-loop elements. By
providing a classification confidence score and flagging uncertain cases for human review, the proposed
system fosters a collaborative workflow in which humans and Al systems co-adapt and improve together.
Although the current approach does not yet implement explainability features, future efforts in this
direction could further enhance transparency, usability, and trustworthiness.

These aspects resonate with the objectives of the COllaboration and Learning through Symbiotic
Artificial Intelligence (COL-SAI) workshop, which emphasizes symbiotic collaboration between humans
and Al for effective decision-making and co-creation. By designing CNN-based malware detection
systems that are not only accurate but also supportive of human judgment and adaptable through
human feedback, this research contributes to the broader vision of building Al systems that collaborate
with, learn from, and evolve alongside their human counterparts in real-world cybersecurity contexts.
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