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Abstract

Autonomous business process systems (ABPS) operate with minimal human intervention while modifying
themselves over time. Being ‘self-modifying’ thereby becomes an intrinsic characteristic that enables a process to
become autonomous. In this paper, we define what it means to be self-modifying in autonomous business process
systems (ABPS) and outline key characteristics of such capability, including (1) the differentiation between two
types of modifications, namely adaptation and evolution, (2) the levels of granularity in which a modification can
be carried out, and (3) the reasons why a possible modification may be triggered. After presenting a motivating
example, we characterize the goals for advancing self-modifying capabilities in ABPSs, and identify open research
challenges, particularly around governance, uncertainty, and continuous learning. This work aims to structure
the problem space of self-modification in ABPSs and provide a conceptual foundation for future research and
development.
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1. Introduction

In an increasingly dynamic and complex digital landscape, business processes (BPs) are expected to
operate with minimal human intervention while modifying their own structure and behavior to meet
changing goals, new environment conditions, or novel constraints [1]. We refer to such systems as
autonomous business process systems (ABPSs). An core capability of ABPSs is self-modification.

The notion of ABPSs was elaborated during the 2025 AutoBiz Dagstuhl seminar.! The main goal
of this seminar was to compile a research agenda toward the realization of ABPSs. Jointly with the
seminar participants, we discussed and developed core concepts, challenges, and research directions.
Specifically, after a series of stimulating talks by experts, participants split into working groups to further
discuss individual topics of the research agenda, including “framed autonomy”, “self-modification”,
“conversational actionability”, and “explainability”. The results of these breakout-groups were presented
to all seminar participants, and their feedback was used to improve the findings. This paper reports on
key findings concerning the topic of “self-modification”.
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Fundamentally, self-modifications in ABPSs may be classified into [2]:

« Adaptation, which refers to short-term, instance-specific modifications that allow the system to
handle unforeseen conditions typically without altering the underlying process schema. These
modifications are often triggered in real-time and involve localized decisions. The goal is to ensure
continuity and resilience without impacting the design of future process instances. Examples
for adaptations include altering the running workflow (such as rerouting, skipping tasks, or
requesting human intervention), reallocating resources, and integrating new data sources or
services at runtime for a specific (set of) process instance(s).

« Evolution, which represents a long-term modification of the process logic and/or model itself that
therefore affects all future instances of the process. These modifications are typically informed
by patterns observed over time, whether through repeated failures, performance bottlenecks,
or shifts in business strategy. Evolution is deliberate and designed to improve future process
executions, often requiring model redesign, policy updates, or system reconfiguration. Examples
for evolution include revising and redesigning the decision logic and underlying BP models.

Without self-adaptation and self-evolution capabilities, ABPSs risk stagnation, brittleness, and
reduced responsiveness in volatile environments. These limitations can compromise process autonomy.
Therefore, understanding and engineering self-modifying capabilities is essential for advancing the
design, implementation, and governance of ABPSs. The need for BPM systems to be flexible and modify
themselves in response to changes has long been recognized in the BPM community [3, 2, 4]. Various
works study the adaptation [5, 6, 7, 8, 9, 10], and evolution of BPs [11, 12, 13].

The contributions of this paper are conceptual and are as follows:

« We define the notion of self-modification in autonomous business process systems (ABPSs),
distinguishing between two key types: adaptation and evolution.

« We identify and organize the core dimensions, goals, and triggers of self-modification, thereby
structuring the problem space.

« We outline key research challenges — particularly around governance, uncertainty, and continuous
learning — that must be addressed to advance self-modifying ABPSs.

2. Running Example: Automated Warehouse

To ground our exploration of self-modifying ABPSs, we begin with a running example inspired by
real-world operations at a large company’s automated warehouses. These warehouses deploy fleets of
robots to retrieve and transport shelves (pods) to human pickers, coordinating complex logistics across
a dynamic, high-throughput environment.

Suppose a robot malfunctions during the Christmas holiday season, one of the busiest times of the
year. Nearby robots quickly reroute their paths to avoid the blocked aisle, and the pending order
is reassigned to a functioning robot. Human workers on the floor receive updated instructions via
handheld devices, ensuring minimal disruption to order fulfillment. This represents a short-term,
operational-level modification (i.e., an adaptation) that addresses the immediate issue without altering
the overall process model.

However, the system does not stop there. It logs the failure event and flags it for review. Upon
inspection, engineers discover a pattern: similar failures tend to occur after approximately 1,000 picks.
In response, a new maintenance rule is introduced, mandating preemptive inspection after every 900
operations. This is a tactical, mid-term modification (i.e., an evolution) — a refinement of the rules and
policies guiding robot operations, aimed at reducing future risk.

This illustrates a spectrum of ABPS modifications — ranging from instance-specific adaptations to
model-level evolution affecting all future instances — captured and enacted with varying degrees of
automation.
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Figure 1: Conceptual model of self-adaption.

3. Types of Modifications in ABPs

Modifications in ABPSs can be classified along several dimensions:

D1: Adaptation vs. Evolution. We introduced this central dimension already in Section 1, referring
to adaptations as short-term, instance-specific modifications, and evolution as the long-term, multi-
instance modification of the process logic and/or model itself [14].

The concept of adaptation in ABPSs strongly connects to work of the software engineering community
on self-adaptive software systems [15]. Here, the MAPE-K loop has established itself as a widely adopted
conceptual model [16, 17]. This model is depicted in Fig. 1.

The self-adaptation logic is structured into four main conceptual activities (MAPE) that leverage a
common knowledge base (K). The knowledge base includes adaptation goals (requirements), adaptation
strategies, or adaptation rules. The four activities are concerned with monitoring the system and
the system’s environment via sensors, analyzing the monitoring data to determine the need for an
adaptation, planning adaptation actions, and executing these adaptation actions via actuators, thereby
modifying the system at run time [9].

The concept of evolution in ABPSs, in contrast, focuses on systematic, long-term modifications that
affect the process model and logic across multiple future instances. It is closely related to work on
software and process evolution [18, 14]. Rather than responding to immediate runtime conditions,
evolution is driven by aggregated insights from monitoring and analysis over time — such as recurring
performance issues, changes in strategic direction, or compliance updates. These insights are used to
deliberately revise the process design, typically through a structured approach involving assessment
of existing process outcomes, planning of structural or behavioral improvements, implementation
of these changes in the model, and validation to ensure conformance with long-term goals. While
adaptation enables resilience and responsiveness, evolution ensures strategic alignment, sustainability,
and long-term optimization of ABPSs.

D2: Task vs. Flow vs. Process. Another critical dimension concerns what is modified. Drawing
from the business process redesign literature [14], we distinguish between:

+ Task-level modifications, which modify how individual tasks are performed or configured (e.g.,
modifying a task’s duration, logic, input/output data, or resource assignment).

« Control Flow-level modifications, which adjust the control flow or routing of tasks (e.g.,
rerouting orders or skipping tasks).

+ Process-level modifications, which alter the structure or central resources of the entire process
(e.g., introducing new roles, shifting coordination logic, or replacing subsystems).

Note that these levels often interact. For instance, rerouting in the warehouse involves flow-level
change, while a new rule for reassigning malfunctioning robots might affect task performance, and
revising the robot maintenance schedule constitutes a process-level change.



This dimension provides additional granularity for analyzing the scope and impact of a modification.
It also affects the complexity of implementation: task-level changes can often be handled locally, while
process-level changes typically require coordination and propagation across components.

D3: Reactive vs. Proactive. Another important distinction concerns the trigger of the modification.
Reactive modifications occur in response to specific events or failures, such as a robot malfunction
triggering rerouting. Proactive modifications, on the other hand, are initiated based on forecasts or
insights derived from predictive analytics. Examples include predictive and prescriptive business process
monitoring [19, 20]; e.g., scheduling preventive maintenance based on predicted failure likelihood or
preventing robots from entering certain aisles at load times.

D4: Human-Driven vs. Autonomous. Modifictions may be either 1) human-driven, where users
detect, decide, and implement modifications; or 2) autonomous, where the system identifies issues and
enacts modifications on its own. In our running example, the creation of the new maintenance rule
might be initially human-driven, but an autonomous ABPS could eventually learn such patterns and
implement similar modifications independently.

D5: Planned vs. Emergent. Planned modifications stem from deliberate, top-down redesign, such
as rolling out a new maintenance policy across sites. Emergent modifications arise bottom-up, realized
as patterns learned from ongoing process adaptations (e.g., see [19]) or eventual model evolutions. An
ABPS that generalizes from local failure logs to propose global improvements exemplifies this emergent
capability.

Characterizing the running example according to the described dimensions. All the key dimensions
of modifications play out in the warehouse scenario. When robots reroute around a malfunctioning
unit, the system performs a short-term, instance-level adjustment — an adaptation. No process model
is modified; the system reacts in real time to maintain flow. By contrast, introducing a maintenance
rule after repeated failures illustrates evolution — a deliberate, model-level change based on aggregated
insights.

Rerouting is reactive when triggered by a specific event. However, it can also be proactive if it is
triggered in advanced using predictive monitoring: it anticipates issues and acts in advance. Both forms
of change can coexist, occurring within the same process window:.

Initially, engineers manually define the maintenance policy — making it human-driven and planned.
But an advanced ABPS could learn the same pattern, propose the rule, and apply it autonomously. If the
rule itself later evolves based on outcomes through, e.g., reinforcement learning, the change becomes
emergent — bottom-up and data-driven.

4. Toward Self-modifying ABPSs

Today’s business process systems typically operate at an augmented level of autonomy, where intelligent
components assist human workers but do not independently drive process execution or change. To
move toward truly autonomous business process systems (ABPSs), we propose a structured roadmap of
autonomy levels, inspired by the SAE J3016 standard for driving automation [21]. While Sheridan’s
Levels of Automation [22] offers an alternative, they focus on isolated task automation rather than
holistic process-level behavior, making them less suitable for ABPSs.

We define autonomy levels as follows:

+ Level 0: No Automation — Execution and orchestration of all tasks are fully manual.
+ Level 1: Process Assistance — The system provides recommendations or highlights anomalies
to human workers (e.g., predictive monitoring [23]).



Table 1

Goals and capabilities for autonomy at different levels and modification objects.

Object of mod- | Level 1: Process Assis- | Level 2: Partial Autonomy | Level 3: Contextual Auton-
ification tance omy
Task Recommending task per- | Automating task assignment | ABPS decides and executes
formers or configurations | or automated execution in | full task reconfiguration au-
(e.g., duration, cost). narrow scopes. tonomously with human fall-
back only in edge cases.
Flow Suggesting alternative paths | Automating routing based on | Rerouting and dynamically
or detecting bottlenecks. real-time conditions or rules. | altering execution paths with
learned policies under uncer-
tainty.
Process Flagging process-wide issues | Automating subprocesses, | Reconfiguring processes,
(e.g., coordination delays). e.g., resource pooling or | modifying policies or goals,
exception handling. and coordinating across
stakeholders with minimal
human oversight.

+ Level 2: Partial Autonomy - The system independently executes isolated tasks (e.g., call routing,
task assignment) within predefined boundaries, but without contextual or adaptive behavior.

+ Level 3: Contextual Autonomy — The system autonomously performs most tasks and orches-
trates flows in a context-aware manner, requiring human intervention only in exceptional cases
(which closely relates to agentic BPM [24]).

While most current BPM systems reside at Level 1 or 2, we envision ABPSs to reside at Level 3.
Achieving this level requires the development of self-modifying capabilities. Specifically, a Level 3
ABPS must:

Detect changes in the operating environment (e.g., concept drift detection [25, 26, 27]).
Decide whether the detected changes require adaptation or evolution.

Select an appropriate modification strategy based on goals, context, and system history.
Learn from prior adaptations and generalize from successful strategies.

M NS .

Communicate and explain its decisions, rationale, and uncertainty to human stakeholders.

The extent and nature of these capabilities depend on the object of modification (task, flow, or
process) as presented in Table 4. For instance, at Level 1, task-level modifications might involve
recommending better parameter configurations; at Level 3, the system may autonomously reassign or
skip tasks. Similarly, flow-level autonomy ranges from highlighting bottlenecks (Level 1) to real-time
rerouting (Level 3), while process-level autonomy progresses from alerting on coordination issues to
full reconfiguration of goals, roles, or policies.

For example, in a warehouse scenario, task-level changes may involve altering how picking or
navigation tasks are performed; flow-level changes may include rerouting due to blocked paths; and
process-level autonomy could entail adjusting global maintenance policies. Thus, progressing to-
ward Level 3 autonomy requires integrating sensing, reasoning, learning, and communication across
abstraction levels, while minimizing reliance on human oversight.

5. Challenges in Enabling Autonomous Modifications

In this section, we discuss three challenges related to governance and human oversight, continual
learning for adaptation management, and uncertainty quantification and communication.



Challenge 1: Governance, Oversight, and Human Interaction. For ABPSs to operate safely and
effectively, governance and human interaction must be built into their design. A key question is when
to refrain from automation and return control to a human process worker, e.g., in scenarios where the
agent has insufficient confidence and is at risk of making mistakes. This is particularly relevant in
ambiguous or high-risk situations. Research in Al planning, runtime monitoring may help establish
thresholds or confidence bounds beyond which a process must escalate to human decision-makers.
Techniques from the ML literature on prediction with reject option [28] (sometimes called “learning to
defer”) may also be explored as a solution direction.

Similarly, determining when and how a user should validate a proposed process or policy modification
requires a framework for explainable adaptation, where the system presents justifications for its
modifications. Solution directions may include methods from the field of explainable AI (XAI) [29], or
justifications may be provided in alternative forms such as simulations of expected outcomes.

Another major issue is aligning the goals of an ABPs with those of its human operators and organi-
zational stakeholders. Multi-objective optimization techniques [30] can assist in balancing trade-offs
between performance, cost, compliance, and user satisfaction while maintaining logical constraints
defined in the process model. However, optimizing across conflicting objectives remains a hard problem,
especially when human values or non-quantifiable criteria are involved.

Quality assurance in fully autonomous scenarios introduces its own challenges. Without humans
routinely checking outcomes, ABPSs must develop internal mechanisms for evaluating whether an
adaptation “worked.” Here, ML-based anomaly detection, performance baselining, and causal reasoning
can help detect regressions or misbehavior. Formal methods for verification and validation of modifying
process logic or agent policies also present a relevant research direction here. LLMs could also be used
for generating justifications or summaries of decisions for human audits or by providing labels for
downstream evaluation — an emerging area sometimes called LLM-as-a-judge [31].

Solutions to the quality assurance problem could use human input purely for evaluation and quality
assurance, even in scenarios where the execution is fully automated. Human input is costly, and hence
a challenge is to make this cost-efficient. E.g., through methods like active testing [32].

Finally, understanding what data is needed to make ABPSs reliable is a key frontier — systems must
know whether they have “enough” context to act or whether to defer or collect more information.

Core Research Questions:

« When should control shift between autonomous processes and humans in ABPSs?

« How can user validation be incorporated into real-time adaptation without bottle-necking auton-
omy of ABPSs?

« How can ABPSs optimize multiple objectives while remaining within formal and ethical con-
straints?

« How can ABPSs evaluate the success or failure of modifications when human validation is
unavailable?

« What are the data quality and coverage thresholds for safe, autonomous decision-making in
ABPSs?

Challenge 2: Continuous Learning and Adaptation Management. A defining feature of self-
modifying ABPSs is their ability to learn from experience and improve process behavior over time.
To support this, the system must continuously record the adaptations it makes — whether reactive or
proactive — and assess their impact both locally (per instance) and globally (across instances). Capturing
this meta-knowledge creates a feedback loop where successful modifications reinforce future decisions
and ineffective ones are pruned. Al planning and reinforcement learning techniques (while balancing
exploration and exploitation; e.g., see [10]) are promising approaches to structuring such learning loops,
especially when enriched by causal modeling of intervention outcomes.

Evaluating generalization in system behavior poses a second challenge. It is not enough for an
adaptation to work well in one instance; the ABPSs must infer under what conditions it will work again.
This raises questions around how process context is encoded and how confidence in the modification is



calibrated. For instance, if a task is repeatedly skipped under certain workload conditions, the system
may learn a policy for skipping it when similar signals appear — but must be careful not to overgeneralize.
Formal guarantees and empirical validation frameworks are needed to ensure safe generalization. This
problem intersects with interpretability and trust, as human stakeholders may require explanations for
the shifts in system behavior.

Finally, long-running processes or high-volume ABPSs face constraints of bounded memory and
context. The system cannot retain or process each event ever observed. Hence, it must learn to construct
and maintain bounded knowledge representations: compressed summaries, predictive state abstractions,
or fixed-size windows of relevant execution history. Techniques from stream reasoning, process mining
over sliding windows, and transformer-based sequence models may offer solutions. Designing an
ABPS that knows which parts of its history to remember, forget, or query becomes a core challenge for
sustainable, real-time continuous learning.

Core Research Questions:

« How can ABPSs continuously record adaptations and assess their effectiveness over time?

« What metrics and techniques enable an ABPS to safely generalize learned behavior across varying
contexts?

« How can an ABPs maintain bounded knowledge representations for long-running or high-
frequency processes?

Challenge 3: Modeling and Measuring Uncertainty. ABPSs must operate under both aleatoric
(inherent randomness) and epistemic (lack of knowledge) uncertainty [33]. Addressing these uncer-
taingties requires both awareness and expressiveness. Aleatoric uncertainty can be modeled through
probabilistic distributions over process durations, outcomes, or resources. Epistemic uncertainty, how-
ever, often requires exploration or targeted sensing to reduce ambiguity. Knowing which type of
uncertainty is present affects which mitigation strategies are appropriate — whether to gather more data
or to hedge decisions probabilistically. Techniques from probabilistic modeling, Bayesian inference,
and fuzzy logic are key for representing and reasoning about uncertainty in process execution.

Quantifying uncertainty involves both qualitative and quantitative measures. In some domains,
thresholds or confidence levels may be set by human experts (qualitative), while in others, Bayesian
models or statistical metrics (quantitative) provide actionable measures. As an example, reliability
estimates for proactive adaptation may be derived from ensembles of prediction models [9]. ABPSs
must combine these forms of knowledge, learning from past executions when quantitative models are
feasible, while falling back on qualitative heuristics when data is sparse or ambiguous. Hybrid methods
that integrate fuzzy logic or ensemble learning could further improve uncertainty modeling in domains
with imprecise information.

Quantifying uncertainty strongly connects to both challenges 1 and 2. For challenge 1, deciding
when to defer the decision-making back to a human operator is a classic task where most solutions
involve uncertainty quantification [28]. Regarding challenge 2, it is well known from the literature
on uncertainty quantification and active learning that accurate estimates of specifically the epistemic
uncertainty are a prerequisite to learn and adapt policies to new environments in a data-efficient
way [33, 34, 35].

A final challenge is communicating uncertainty effectively to human stakeholders. Especially in
semi-autonomous systems, operators must understand not only what the system plans to do, but also
how confident it is in that choice. As pointed out by Miller “probabilities probably don’t matter” [36].
This means uncertainty quantification should be augmented with explainable AI (XAI) techniques
(e.g., [37]). Visualized confidence intervals, and natural language generation via LLMs may help bridge
this gap (e.g., as done for adaptive software systems [38]). Additionally, representing the impact of
uncertainty on downstream outcomes — such as potential delays, risks, or degraded service quality -
will help human decision-makers intervene appropriately.

Core Research Questions:

« How can ABPs differentiate between epistemic and aleatoric uncertainty during execution?



Table 2

Challenge mapping across different levels of modification granularity.

Object Challenge 1: Gover- | Challenge 2: Continu- | Challenge 3: Modeling
of modi- | nance, Oversight, and | ous Learning and Adap- | and Measuring Uncer-
fication Human Interaction tation Management tainty
Task When should a task’s ex- | How can the system learn | How confident is the sys-
ecution or performer be | better ways to perform | tem in altering task param-
modified manually vs. au- | tasks over time? eters or execution strat-
tonomously? egy?
Flow Who approves new routing | Can routing rules be gener- | What are the risk profiles
logic or control decisions? | alized across similar cases | of rerouting or skipping
without overfitting? tasks?
Process When must a human ap- | How does the system | How can uncertainty in
prove structural redesign | record, assess, and evolve | aggregated outcomes be
(e.g., policy updates)? high-level process modifi- | modeled across multiple
cations? processes?

« How can ABPSs combine qualitative and quantitative uncertainty metrics for robust decision-
making?

« What are effective representations of uncertainty (e.g., using probabilistic or fuzzy paradigms)?

« How should ABPSs communicate uncertainty and associated risk to users in a transparent and
actionable way?

Challenges and object of modification. Like in Section 3, extent and relevance of the aforemen-
tioned challenges depend on the object of modification (task, flow, or process), which is presented in
Table 5.

6. Conclusion and Outlook

In this paper, we have laid the conceptual groundwork for understanding and engineering self-modifying
capabilities in autonomous business process systems (ABPSs). We defined what it means for an ABPS
to self-modify, distinguishing between the short-term reactivity of adaptation and the long-term
reconfiguration of evolution, and introduced a structured framework for levels of business process
autonomy. We further mapped these autonomy levels across the different objects of modification - task,
flow, and process — and connected them to system goals and capabilities.

As ABPSs strive toward higher levels of autonomy, we identified three core research challenges
that must be addressed to enable safe, intelligent, and human-aware self-modification: (1) establishing
robust governance mechanisms and human oversight; (2) managing continuous learning to support
sustainable and generalizable adaptations; and (3) modeling and communicating uncertainty in ways
that foster trust and informed decision-making.

Together, these challenges highlight a critical insight: autonomy is not simply about replacing
humans but about redesigning systems that can responsibly decide when to act, when to adapt, and
when to defer. The path forward requires integrating techniques from Al planning, machine learning,
explainable Al, adaptive software systems, causal inference, process mining, and human-computer
interaction into coherent architectures that balance autonomy with accountability.

We envision ABPSs of the future not as black-box automation engines but as collaborative agents
capable of engaging with their environments and human counterparts in a transparent, contextual, and
goal-aligned manner. To that end, we encourage the community to build benchmarks, share evaluation
frameworks, and develop modular toolkits that bring us closer to truly self-modifying, trustworthy, and
adaptive business processes.
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