Agentic Al Process Observability: Discovering Behavioral
Variability”
Fabiana Fournier?!, Lior Limonad! and Yuval David’

'IBM Research, Israel

Abstract

Al agents that leverage Large Language Models (LLMs) are increasingly becoming core building blocks of modern
software systems. A wide range of frameworks is now available to support the specification of such applications.
These frameworks enable the definition of agent setups using natural language prompting, which specifies
the roles, goals, and tools assigned to the various agents involved. Within such setups, agent behavior is non-
deterministic for any given input, highlighting the critical need for robust debugging and observability tools. In
this work, we explore the use of process and causal discovery applied to agent execution trajectories as a means of
enhancing developer observability. This approach aids in monitoring and understanding the emergent variability
in agent behavior. Additionally, we complement this with LLM-based static analysis techniques to distinguish
between intended and unintended behavioral variability. We argue that such instrumentation is essential for
giving developers greater control over evolving specifications and for identifying aspects of functionality that
may require more precise and explicit definitions.

Keywords
Business Process Management, Al, Agents, LLM

1. Introduction and Motivation

Artificial intelligence is advancing swiftly, transitioning from basic task automation to the development
of sophisticated, autonomous systems. A key development in this progression is the emergence of
Agentic AL “This concept refers to Al systems that can perceive their environment, reason, plan, and
act to achieve specific goals, much like human agents” !. In most contemporary frameworks realizing
Agentic Al systems (e.g., CrewAl”, LangGraph®, AutoGen?), an Agentic Al is essentially a configurable
wrapper around a Large Language Model (LLM) [1], typically specified with a role, goal, and behavioral
constraints that enable it to operate independently or collaboratively with other agents in a shared
space.

Observability is an important characteristic of an Agentic Al system, reflecting the ability to infer
actionable insights about its inner workings by analyzing the inputs and outputs as they are transformed
and exchanged by and between the system’s agents [2]. A key aspect of enabling observability is
providing tools that help developers of Agentic Al applications create high-quality code in minimal
time. One of the main drawbacks of this type of application is the stochastic nature of Al agents.
Due to their nondeterministic behavior, sometimes the same input triggers a variety of execution
trajectories yielding different results. By an agent trajectory, we refer to the path carried out by an
agent during execution, from input to final output, including its decisions, actions, and intermediate
results. Within such trajectories, there is a need to distinguish between behavior variability that is
explicitly intended, hence specified, by the developer versus variability that accidentally arises during
execution. Identification of the latter is important since it may undermine performance and require the

CEUR-WS.org/Vol-4087/paper3-Long.pdf

PMAI25: Process Management in the Al era, Oct 25, 2025, Bologna, Italy

"This project has received funding from the European Union’s Horizon research and innovation programme under grant
agreements no 101092639 (FAME), and 101092021 (AutoTwin).

& fabiana@il.ibm.com (F. Fournier); liorli@il.ibm.com (L. Limonad); yuval.david@ibm.com (Y. David)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

'https://bloorresearch.com/2025/02/the-rise-of-agentic-ai-the-next-step-in-artificial-intelligence/

*https://docs.crewai.com

Shttps://www.langchain.com/langgraph

*https://microsoft.github.io/autogen/stable//index.html

CEUR
E Workshop
Proceedings

mailto:fabiana@il.ibm.com
mailto:liorli@il.ibm.com
mailto:yuval.david@ibm.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://bloorresearch.com/2025/02/the-rise-of-agentic-ai-the-next-step-in-artificial-intelligence/
https://docs.crewai.com
https://www.langchain.com/langgraph
https://microsoft.github.io/autogen/stable//index.html

developer to better crystallize the specification.

In this work, we aim to provide software engineers who develop Al agents with the means to examine
points of variability arising in the specification of their agentic applications employing LLM-based static
analysis. We consider agent execution trajectories as process event logs that constitute timestamped
events (e.g., tool invocations) as the data source for analysis. This allows using Process Mining [3]
and Causal Process Discovery [4, 5] capabilities to reveal invocation dependencies and to recognize
variability that arises as split points in such views.

Following the terminology presented in [6], processes with similar inputs and outcomes can be
considered variations of a single process and are referred to as variants. In the process model, each
branching point is either a variation point or a decision point. It is a variation point if its branches
correspond to different process variants; otherwise, it is a decision point. In the context of our work, we
adopt this terminology to distinguish between intended variability, which arises from explicit decision
statements in the agent specifications (i.e., decision points), and unintended variability, which results
from the non-deterministic nature of LLM agents leading to inconsistent execution trajectories (i.e.,
variation points).

The work presented here represents early efforts in the emerging area of agent observability. Our
main contribution lies in treating agent execution trajectories as the target of process mining. This
perspective enables the use of causal and process discovery techniques to explore the behavior and
collaboration of Al agents. As part of our approach, LLM-based static analysis complements the
discovery process by providing additional insights into behavioral variability.

The remainder of the paper is organized as follows. Section 2 reviews related work. Section 3
introduces an example application of a calculator in CrewAl. Section 4 details our overall method for
agentic process observability, which is then instantiated in the context of the example application,
with results presented in Section 5. We conclude with key insights and future research directions in
Section 6.

2. Related Work

Agentic Business Process Management (Agentic BPM) traces its roots to early work at the intersection
of Multi-Agent Systems (MAS) and BPM [7]. In these early efforts, agent-centric data abstractions
helped reshape complex system behavior specifications by partitioning them into smaller, encapsulated
components that were easier to specify and verify. Since the introduction of the artifact-centric
approach [8], this line of work has progressively laid the groundwork for process mining across multiple
behavioral dimensions [9], and more recently, has initiated discussions around an Object-Centric Event
Data (OCED) [10] standard. Today, with the widespread adoption of Al and the rise of LLMs, Agentic
Al is experiencing a renaissance in BPM, reflected in the Al-Augmented Business Process Management
Systems (ABPMS) manifesto [11], and echoed in the development of Al agent-centric BPM systems,
namely Agentic BPM [12].

In this work, we employ process and causal mining in the scope of Agentic Al for the sake of process
observability. The former is a relatively mature discipline with instances of an agentic flavor already
explored with the goal of specification verification [7]. The application of causal mining to Agentic Al
is relatively new.

Causal discovery aims to uncover causal relationships from observational data, distinguishing cause-
effect directionality from mere correlation [13, 14]. Previous work on causal discovery from process
data generated graphs merely based on key performance indicators [15] or decision points [16, 17, 18].
Our method for causal discovery in business processes [4, 5] infers causal graphs from the activity
timestamps by adapting and extending the work in [19]. We employ causal discovery over agent
execution trajectories to uncover function calls and tool invocations dependencies within and between
the agents. The novelty of our work lies in leveraging process mining and causal process discovery,
based on the execution times of activities, to identify variability in the non-deterministic behavior of Al
agents. More specifically, it aims to reveal invocation dependencies and recognize variability that arises

at split points in these views.

The types and the configuration of LLMs employed by agents can significantly influence agent
behavior. Although parameters such as temperature, top-k, top-p, and repetition penalty are commonly
used to reduce non-deterministic responses to identical or similar inputs, recent work already concludes
that even with stricter settings, such as setting the temperature to zero, LLMs can still exhibit notable
instability [20, 21]. Consequently, observability of such behavioral variabilities is crucial, not only
for selecting among different LLM models to be associated with different agents, but also for guiding
developers in ‘tightening’ all loose ends in the agent specifications, ultimately supporting a more
consistent user experience.

The concept of variability has been extensively studied in Software Engineering (SE), particularly in
the context of feature modeling within the paradigm of software product lines [22]. In this paradigm,
variability is seen as a means of introducing flexibility into the software architecture, enabling multiple
alternative instantiations of a single specification to suit different deployment needs. A similar concept
was adopted in BPM, as in [23], where variability denotes customizable elements in a process model
representing a family of business process variants. In our work, by contrast, we focus on the undesired
form of variability that arises accidentally due to insufficiently rigorous specifications. These ‘loose
ends’ in the design enable agents to perform unforeseen behaviors during execution.

We leverage an LLM-based static analysis approach to highlight the sources of variability in the
specifications. Traditionally, static analysis is an integral component of SE and involves examining
source code without executing it, to identify potential errors, code quality issues, and security vulnera-
bilities [24]. Given the natural language style in which Al agents are currently specified, captured by
the recently coined term vibe coding®, our approach aligns with recent work leveraging LLMs for static
analysis in SE [25, 26, 27].

*https://x.com/karpathy/status/1886192184808149383

https://x.com/karpathy/status/1886192184808149383

calculation_task = Task(
description=f"""
Use the provided operations to calculate the result of the expression.

For each operation in the sequence:
1. If an operand is a variable (like E0), substitute its current value
2. Use the appropriate tool to perform the calculation:
- addition(a, b)
- subtraction(a, b)
- multiplication(a, b)
- division(a, b)
- evaluate_parentheses(expr)
3. Store the result in the variable specified by "name"

For every calculation step, show:

- The operation being performed: "[name] = [operation]([opl], [op2])"

- The tool being used with resolved values: "Using tool: [tool_name]([valuel], [value2])"
- The result: "Result: [value]"

IMPORTANT :

- You MUST use the exact tool matching the operation

- You MUST show your work for each step

- You MUST substitute variable values correctly

- If you have multiple mathematical operations you should execute the calculation in the following
- order: First do Multiplication then Division then Addition and lastly Subtraction

Return only the final numerical result at the end.
expected_output="The calculated result as a number",
agent=calculator_agent

)

crew = Crew(
agents=[decomposer_agent, calculator_agent],
tasks=[decomposition_task, calculation_task],
verbose=True,
process=Process.hierarchical,
manager agent-manager,
tools=math_tools

)
Define the agents
decomposer_agent = Agent(
role="Expression Decomposer", goal="Decompose the given expression into a sequence of operations",
< backstory="""You are a mathematical expression decomposer. Your job is to take a mathematical
expression and break it down into a sequence of simple operations that can be calculated
step by step. You follow PEMDAS rules and assign variables to intermediate results. You never calculate
< values - you only identify the operations needed.""", llm=1llama-3-3-70b-instruct, verbose=True,
— allow_delegation=False

)
calculator_agent = Agent(
role="Calculator", goal="Calculate expressions using only the provided tools", backstory="""You are a
- calculator that can only work by using tools. For every mathematical operation, you must use the
o corresponding tool. You carefully track variables and substitute their values when needed.""",
- 1llm=1lama-3-3-70b-instruct, verbose=True, allow_delegation=False, tools=math_tools, temperature=0.1
)

manager = Agent(
role="Project Manager", goal="Efficiently manage the crew and ensure high-quality calculation completion,
- you are not allowed to call tools only to delegate work to other agents", backstory="You're an
- experienced calculation manager, skilled in overseeing complex calculations and guiding teams to
o correctly compute mathematical formulae. Your role is to coordinate the efforts of the crew members,
- ensuring that each task is completed on time and to the highest standard. but you do not call the tools
o vyourself only to your agents", allow_delegation=True, llm=1lama-3-3-70b-instruct

Figure 1: CrewAl Calculator App specifications

3. Example Application

We use a simple toy example of a calculator application in CrewAl as shown in Figure 1 to evaluate
basic calculations when given mathematical formulae as input. In its setup, three agents were explicitly
defined, Decomposer, Calculator, and Manager. The Calculator agent was assigned a calculation task,
and the Decomposer agent was assigned a decomposition task relevant to expressions with parentheses.
The Manager agent oversees the overall execution process and alters the delegation of responsibilities
between the other agents. To fulfill the calculation task, a set of math tools is made available, including
multiplication, division, addition, subtraction, and parentheses evaluation.

4. Approach

Overall, our approach is the process depicted in Figure 2. It facilitates an ongoing, high-level create—in-
sight—improve development cycle as the code is being shaped by the developer. The process consists of
the following steps:

1. Trajectory files generation — A set of #k runs is invoked with a given input as a basis for the
analysis. In each run, the full execution trajectory of the agents is captured in a corresponding
log file, recording every agent action, particularly tool invocations, along with its associated
timestamp. For this step, we conducted 290 runs of the Calculator application using the same
input. Specifically, we used the formula 1 + 2 — 3 % 4/5, chosen to ensure that each of the basic
arithmetic operations appears exactly once.

2. Event-log processing — A single consolidated process event log is compiled from the trajectory
files, the 290 trajectory logs in our case. This processing step extracts the tool invocations
performed by each agent, along with their corresponding timestamps. The resulting data is
organized as a tabular event-log structure, where each row represents a single, timestamped
invocation of a tool by an agent. From a process mining perspective, the log is examined by
using the concatenation of the agent and tool columns as the activity type identifier and the run
number as the trace identifier.

3. Process and causal discovery - subsequently, process and causal discovery are applied as two
complementary views to form the collective execution flows. More specifically, the causal view
depicts functional dependencies (among tool invocations) and variability via logical gateways [5]
(i-e., split points in this view), whereas the process view captures temporal dependencies and
frequencies. We employed Heuristics [28] and Causal [4, 5] Process Mining on the input event

log.

4. Rule derivation — For each split point identified as a gateway within the causal model, the
developer can examine its essence (i.e., whether it represents a variation or decision point). To
support this, rule derivation is applied, producing a rule statement for the selected gateway that
captures the control-flow structure it represents within the causal model. In our example, we
chose the XOR_0 gateway to demonstrate this. In a more realistic scenario, it is likely that the
developer will address all other split points.

5. Static analysis - For any selected gateway, we apply LLM-based static analysis to distinguish
decision points from variation points. Given the corresponding rule statement as input, the
LLM is prompted to match it against the source text of the agentic application to identify its
manifestation. If a matching instruction is found in the application specification, it is highlighted
for the developer’s attention. Details about the choice of LLM input and output prompts are
elaborated below in our example application results.

6. Reliability calculation - Complementing the gateway selection, our approach also includes a
statistical computation of reliability based on the frequencies in the process model to determine
the number of runs required and the degree of confidence, as elaborated below.

Prompt: ﬂ e

" 4 en [€—iNVOke .
e.g., "142-3"4/5 Developer select x N vcion)
in||aut create some split-point insights insights

e.g., "XOR_0"

improve ‘

v
- input
t\ . N\ i AN AN
~ p;;u_depwy &[> [P O] ¢ 5 [Hipub! Static Analysis output>] & /3 |. o, 423
#k-runs : | N h
(e.g., 290) l LLM AR 3)3
|

icati Process Mining - . o
Agentic Engine Application / ° l \input Application input LLM Highlighted

spec spec ‘ Application spec
output Causal "after the Calculator
) input Rule Derivation output agent invokes the
Discovery 2 "
2 _/ division tool...
. Event-log Causal Model
S— —input- N
Processing
#k Trajectory log files output Process | input Reliability
Y Discovery u Calculation

agent tool Hinput»
K Process Moy

manger | multiplication t

calculator division 12

Figure 2: Agentic Al Process Observability Approach: Steps are numbered, yellow arrows indicate the main

sequence, and green arrows depict the high-level create-insight-improve development cycle.

Reliability Calculation for Gateways

The analysis of gateways also raises the question of whether the data acquired is sufficient to infer
faithful conclusions about each variation point, considering the number of observation runs traversing
it and the proportions of observed outbound runs.

Drawing on the normal approximation to the binomial distribution, the minimum required sample
size to estimate an observed proportion p of process runs following a specific branch at a gateway is
given by the formula n = ZZL;_‘O) where n is the required sample size, Z is the Z-score corresponding
to the desired confidence level (e.g., Z = 1.96 for 95% confidence), p is the observed branch proportion,
and E is the desired margin of error (e.g., E = 0.05 for #5%). To estimate the observed proportion, a
pilot sample is required. In our case, we used the initial set of 290 runs for this purpose.

This should be complemented by ensuring sufficient sampling to detect rare branches that may
not yet have been observed. Specifically, to be 95% confident that a branch with true prevalence p is
observed at least once, the number of required runs n must also satisfy (1 — p)" < 0.05.

Overall, for any given gateway, the number of observed runs must exceed both the minimum required
to estimate observed branch proportions accurately and the threshold necessary to detect unobserved
rare branches with high confidence. Complementing our last step, we also pursue an analysis of the
minimal number of runs.

5. Example Application Results

Applying our approach to the calculator example yielded the following results. For the given input, the
two execution graphs are illustrated in Figure 3.

The heuristics view (Figure 3A) helps trace outlier (e.g., less frequent) trajectories. In our example
application, it shows an unusual loophole invocation of the “Evaluate_parentheses” tool by the Calculator
agent despite the fact that there were no parentheses in the input. From analyzing the logs, we
discovered that this behavior was triggered by the LLM arbitrarily surrounding some sub-expressions
with parentheses.

The causal view (Figure 3B) depicts the invocation tool calls associated with each agent, helping to
identify possible ‘breaches of responsibility’, having an agent invoke a tool that does not correspond
to its role according to the application specification. In our case, the Project Manager agent was not
explicitly granted access to any of the math_tools. However, in the majority of the execution trajectories,
it invoked these operations directly without delegation.

110 ‘ Project Manager_multiplication.tool (184) ‘

YN

Calculator_multiplication.tool (118) ‘ 20

105

‘ Calculator_division.tool (132) ‘

\28 157 Project Manager
‘ Calculator_addition.tool (122) | multiplication.tool

3

Calculator

| Project Manager_division.tool (169) r/l(ﬂ
’/ “
‘ Project Manager_addition.tool (183) ‘ @
161 \ / /

=

‘ Project Manager_subtraction.tool (170) | ‘ Calculator_subtraction.tool (128) ‘

170 120
(A) Heuristics view (B) Agent-centric causal view

Figure 3: Input execution graphs for 290 runs with the input: 1+ 2 —3 % 4/5

In addition, the causal view also captures the variability in the execution of the trajectories as
illustrated by the diamond-shaped gateways. This serves our further exploration of the concrete type
of each of these gateways. For static analysis, we populated the prompt, which also included the rule
statement, to describe the junction structure of the XOR_0 gateway as highlighted in Figure 4. This
prompt was presented to an LLM (LLaMA 3-3 70B Instruct), along with the application specification
shown in Figure 1, for matching purposes. We used LLaMA 3-3 70B Instruct for static Python code
analysis due to its strong instruction-following capabilities and demonstrated effectiveness in code
understanding and generation tasks, as evidenced in recent evaluations [29]. As illustrated, the LLM’s
response (Figure 5) identified a part of the task specification (also highlighted in Figure 1) as implying
the rule statement for the XOR_0 gateway, recognizing it as a decision point. However, as also noted,
this implication fails to account for the alternation of control between the two agents—an aspect not
explicitly specified in the application and one that requires further attention from the application
developer. With the help of the aforementioned views and the static analysis, the developer of the
application is able to determine that the Project Manager agent’s definition should be augmented with
a tools=[] entry to eliminate the discovered breach of responsibility.

XOR_0-matchup = f"""can you explicitly find the following rule :
"after the Calculator agent invokes the division tool, it proceeds to either the Calculator agent invoking the
o addition tool or to the Project Manager agent invoking the addition tool",

in the folllowing prompt:"{prompt_for_ agent}".

dont extract the complete prompt.

highlight an explicit statement in the prompt that is either: (1) an equivalent of the rule, (2) the

~ statement is implied from the rule, or (3) the rule is implied from the statement

mun

Figure 4: LLM-based static analysis: searching the split logic in the specification

After carefully examining the prompt, I found a statement that **implies** the rule:

"...If you have multiple mathematical operations you should execute the calculation in the following order:

o First do Multiplication then Division then Addition and lastly Subtraction..."

This statement implies that after performing a division operation (using the division tool), the next operation
< will be either an addition operation (which could be invoked by the Calculator agent or the Project Manager
< agent). Although it does not explicitly mention the agents, the order of operations suggests that after

- division, addition is the next step, which aligns with the rule.

Figure 5: Static analysis response: rule is implied but without agent responsibilities

Reliability Assessment of the XOR_0 Gateway

Lastly, we examined the reliability of the XOR_0 gateway with respect to the minimum number of runs
required. Given the current number of observed runs through this gateway, and targeting a margin of
error of 5% at a 95% confidence level (i.e., E = 0.05 and Z = 1.96), each of the two branches requires
approximately 157 runs. This implies that 35 additional observations are needed beyond the current
122. Otherwise, with only 122 runs, the current margin of error remains at +5.66%. Adding 35 more
runs (to reach 157) will reduce this to +5%.

However, to also ensure—with 95% confidence—that a branch with a minimum true prevalence of 1%
is observed at least once, the total number of runs must exceed 298. Therefore, to fully validate the
gateway both in terms of proportion estimation and rare-branch detection, an additional 176 runs are
required for this split, entailing 418 additional runs in total. Given the nature of our simple application
example, we considered the observed margin of error of + 5.66% satisfactory.

Modifying the specification

We adapted the specification shown in Figure 1, adding tools=[] to explicitly prohibit the manager agent
from executing any tools. Figure 6(A) illustrates the result of this modification. As shown, while this
change eliminated the manager agent’s breach of responsibility, it still continued to invoke some tools.

To address this, we further revised the description of the calculation task and the manager’s backstory
to more strictly prohibit tool usage by the manager agent, as depicted in Figure 7. This additional re-
finement successfully enforced the intended behavior, restricting tool invocation solely to the calculator
agent as shown in Figure 6(B).

6. Conclusions and Outlook

In this work, we propose an approach for agent observability that leverages two complementary
techniques of process and causal discovery to identify points of variability in agent trajectories. We then
apply LLM-based static analysis to determine the nature of these variation points. Our contribution is
further complemented by a reliability measurement for split points.

We illustrated the approach using an example of a calculator application, demonstrating the possible
valuable insights that such instrumentation can provide to support developers engaged in Agents
DevOps. Our preliminary results show the potential of applying our framework in the context of
observability. We acknowledge that further empirical validation on real-world applications and with

Calculator

multiplication.tool

Project Manager

multiplication.tool

Calculator

evaluate_parenthesestool @ multiplication.tool
addition.tool

@
L7

(B) Making the calculation task

(A) Restricting tool usages with “tools=[]" and the backstory for the
manager agent more strict

addition.tool division.tool

subtraction.tool

Figure 6: Causal views after specification modifications

calculation_task = Task(
description=£f"""
ONLY the Calculator should use tools for this task.
The manager should delegate this entire task to the calculator_agent.

)
manager = Agent(
backstory="You are a project manager who coordinates work but NEVER performs calculations yourself. Your

- only job is to delegate tasks to the appropriate agents. You do not have access to any tools and must
- not attempt to use them. All actual work must be done by your team members.", tools=[],

Figure 7: Revised task and manager’s backstory

other agentic frameworks is needed to establish the robustness of our approach. Furthermore, future
work should investigate how multiple input utterances can be populated to enable joint observation
and robust testing coverage.

Our control-flow-based realization for rule derivation is currently agnostic to the potential data
richness underlying such decision points, and future research could extend this with data-aware analysis
of these decisions.

Whether through single-agent input analysis or the cumulative investigation of multi-agent trajec-
tories recorded over time in a running Agentic Al system, the domain of agent process observability
presents a fresh playground for exploration using process and causal discovery tools developed over
the past decades. As seen in the evolution of other application domains, this area may first emerge with
observability tools and gradually progress toward realizing the vision of self-debugging and adaptive
agents—agents that monitor their own execution, explain their actions, debug and enhance one another’s
behavior, and learn to evolve over time to become more reliable and autonomous.

Declaration on Generative Al

During the preparation of this work, the authors used GPT-40 to: Grammar and spelling check. After
using this tool/service, the authors reviewed and edited the content as needed and take full responsibility
for the publication’s content.

References

(1]

[5]
(6]

[11]

[12]

[13]

[14]

[15]

A. Plaat, M. van Duijn, N. van Stein, M. Preuss, P. van der Putten, K. J. Batenburg, Agentic large
language models, a survey, 2025. URL: https://arxiv.org/abs/2503.23037. arXiv:2503.23037.

L. Dong, Q. Lu, L. Zhu, Agentops: Enabling observability of LLM agents, 2024. URL: https://arxiv.
org/abs/2411.05285. arXiv:2411.05285.

W. van der Aalst, Process Mining, Springer, Berlin, Heidelberg, 2016. URL: http://link.springer.
com/10.1007/978-3-662-49851-4. d0i:10.1007/978-3-662-49851-4.

F. Fournier, L. Limonad, I. Skarbovsky, Y. David, The WHY in Business Processes: Discovery
of Causal Execution Dependencies, Kiinstliche Intelligenz (2025). URL: https://rdcu.be/d52Qz.
doichttps://doi.org/10.1007/s13218-024-00883-4.

Y. David, F. Fournier, L. Limonad, I. Skarbovsky, The WHY in Business Processes: Unification of
Causal Process Models, in: BPM Forum in BPM Conference (to appear), 2025.

F. Milani, M. Dumas, R. Matulevi¢ius, Identifying and classifying variations in business processes,
in: Lecture Notes in Business Information Processing, volume 113 LNBIP, 2012, pp. 136-150.
d0i:10.1007/978-3-642-31072-0_10.

F. Belardinelli, A. Lomuscio, F. Patrizi, An abstraction technique for the verification of artifact-
centric systems, in: Proceedings of the 13th International Conference on Principles of Knowledge
Representation and Reasoning, KR’12, AAAI Press, 2012, p. 319-328.

R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. Heath, S. Hobson, M. Linehan, S. Maradugu,
A. Nigam, P. Sukaviriya, et al., Introducing the guard-stage-milestone approach for specifying
business entity lifecycles, in: Web Services and Formal Methods: 7th International Workshop,
WS-FM 2010, Hoboken, NJ, USA, September 16-17, 2010. Revised Selected Papers 7, Springer, 2011,
pp. 1-24.

D. Fahland, Process Mining over Multiple Behavioral Dimensions with Event Knowledge
Graphs, Springer International Publishing, Cham, 2022, pp. 274-319. URL: https://doi.org/10.
1007/978-3-031-08848-3_9. d0i:10.1007/978-3-031-08848-3_09.

D. Fahland, M. Montali, J. Lebherz, W. van der Aalst, M. van Asseldonk, P. Blank, L. Bosmans,
M. Brenscheidt, C. di Ciccio, A. Delgado, D. Calegari, J. Peeperkorn, E. Verbeek, L. Vugs, M. T.
Wynn, Towards a simple and extensible standard for object-centric event data (OCED) - core model,
design space, and lessons learned, 2024. URL: https://arxiv.org/abs/2410.14495. arXiv:2410.14495.
M. Dumas, F. Fournier, L. Limonad, A. Marrella, et al., Al-augmented Business Process Management
Systems: A Research Manifesto, ACM Transactions on Management Information Systems 14
(2023). doi:10.1145/3576047.

H. Vu, N. Klievtsova, H. Leopold, S. Rinderle-Ma, T. Kampik, Agentic business process management:
The past 30 years and practitioners’ future perspectives, 2025. URL: https://arxiv.org/abs/2504.03693.
arxiv:2504.03693.

P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search, The MIT Press, 2001. URL:
https://direct.mit.edu/books/book/2057/causation-prediction-and-search. doi:10.7551/mitpress/
1754.001.0001.

J. Pearl, Causality: Models, reasoning, and inference, second edition, Causality: Models, Reasoning,
and Inference, Second Edition (2011) 1-464. URL: https://www.cambridge.org/core/books/causality/
B0046844FAE10CBF274D4ACBDAEBS5F5B. doi:10.1017/CB09780511803161.

B. F. A. Hompes, et al., Discovering Causal Factors Explaining Business Process Performance
Variation, in: Advanced Information Systems Engineering, Springer, 2017, pp. 177-192.

https://arxiv.org/abs/2503.23037
http://arxiv.org/abs/2503.23037
https://arxiv.org/abs/2411.05285
https://arxiv.org/abs/2411.05285
http://arxiv.org/abs/2411.05285
http://link.springer.com/10.1007/978-3-662-49851-4
http://link.springer.com/10.1007/978-3-662-49851-4
http://dx.doi.org/10.1007/978-3-662-49851-4
https://rdcu.be/d52Qz
http://dx.doi.org/https://doi.org/10.1007/s13218-024-00883-4
http://dx.doi.org/10.1007/978-3-642-31072-0_10
https://doi.org/10.1007/978-3-031-08848-3_9
https://doi.org/10.1007/978-3-031-08848-3_9
http://dx.doi.org/10.1007/978-3-031-08848-3_9
https://arxiv.org/abs/2410.14495
http://arxiv.org/abs/2410.14495
http://dx.doi.org/10.1145/3576047
https://arxiv.org/abs/2504.03693
http://arxiv.org/abs/2504.03693
https://direct.mit.edu/books/book/2057/causation-prediction-and-search
http://dx.doi.org/10.7551/mitpress/1754.001.0001
http://dx.doi.org/10.7551/mitpress/1754.001.0001
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
https://www.cambridge.org/core/books/causality/B0046844FAE10CBF274D4ACBDAEB5F5B
http://dx.doi.org/10.1017/CBO9780511803161

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]
[28]

[29]

A.]. Alaee, M. Weidlich, A. Senderovich, Data-Driven Decision Support for Business Processes:
Causal Reasoning and Discovery, 2024. URL: https://link.springer.com/10.1007/978-3-031-70418-5_
6.

T. Narendra, P. Agarwal, M. Gupta, S. Dechu, Counterfactual reasoning for process optimization
using structural causal models, in: Lecture Notes in Business Information Processing, volume 360,
2019. URL: https://doi.org/10.1007/978-3-030-26643-1_6.

S.J.J. Leemans, N. Tax, Causal Reasoning over Control-Flow Decisions in Process Models, in:
CAISE 2022, Leuven, Belgium, June 6-10, 2022, Proceedings, volume 13295 of LNCS, Springer, 2022,
pp. 183-200.

S. Shimizu, Statistical Causal Discovery: LINGAM Approach, SpringerBriefs in Statistics, Springer
Japan, Tokyo, 2022. URL: https://link.springer.com/10.1007/978-4-431-55784-5.

S. Ouyang, J. M. Zhang, M. Harman, M. Wang, An empirical study of the non-determinism of
chatgpt in code generation, ACM Trans. Softw. Eng. Methodol. 34 (2025). URL: https://doi.org/10.
1145/3697010. doi:10.1145/3697010.

B. Atil, S. Aykent, A. Chittams, L. Fu, R. J. Passonneau, E. Radcliffe, G. R. Rajagopal, A. Sloan,
T. Tudrej, F. Ture, Z. Wu, L. Xu, B. Baldwin, Non-determinism of “deterministic” LLM settings,
2025. URL: https://arxiv.org/abs/2408.04667. arXiv:2408.04667.

K. Czarnecki, S. Helsen, U. Eisenecker, Staged configuration using feature models, in: R. L. Nord
(Ed.), Software Product Lines, Springer, Berlin, Heidelberg, 2004, pp. 266-283.

M. L. Rosa, W. van der Aalst, M. Dumas, F. P. Milani, Business process variability modeling: A
survey, ACM Comput. Surv. 50 (2017). URL: https://doi.org/10.1145/3041957.

A. P.S. Venkatesh, S. Sabu, A. M. Mir, S. Reis, E. Bodden, The Emergence of Large Language
Models in Static Analysis: A First Look through Micro-Benchmarks, in: Proceedings of the 2024
IEEE/ACM First International Conference on Al Foundation Models and Software Engineering,
ACM, New York, NY, USA, 2024, pp- 35-39. doi:10.1145/3650105.3652288.

A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, J. M. Zhang, Large Language
Models for Software Engineering: Survey and Open Problems, in: Proceedings - 2023 IEEE/ACM
International Conference on Software Engineering: Future of Software Engineering, ICSE-FoSE
2023, 2023. doi:10.1109/ICSE-FoSE59343.2023.00008.

A. Carleton, M. Klein,]J. Robert, E. Harper, R. Cunningham, D. de Niz, J. Foreman, J. Goodenough,
J. Herbsleb, I. Ozkaya, D. Schmidt, F. Shull, Architecting the Future of Software Engineering: A
National Agenda for Software Engineering Research & Development, 2021.

I. Ozkaya, Application of Large Language Models to Software Engineering Tasks: Opportunities,
Risks, and Implications, 2023. doi:10.1109/MS.2023.3248401.

A. Weijters, W. van der Aalst, A. K. A. De Medeiros, Process mining with the heuristics miner-
algorithm, Technische Universiteit Eindhoven, Tech. Rep. WP 166 (2006) 1-34.

P. Ersoy, M. Ergahin, Benchmarking Llama 3 70B for code generation: A comprehensive evaluation,
Orclever Proceedings of Research and Development 4 (2024) 52-58. doi:10.56038/oprd.v4il.444.

https://link.springer.com/10.1007/978-3-031-70418-5_6
https://link.springer.com/10.1007/978-3-031-70418-5_6
https://doi.org/10.1007/978-3-030-26643-1_6
https://link.springer.com/10.1007/978-4-431-55784-5
https://doi.org/10.1145/3697010
https://doi.org/10.1145/3697010
http://dx.doi.org/10.1145/3697010
https://arxiv.org/abs/2408.04667
http://arxiv.org/abs/2408.04667
https://doi.org/10.1145/3041957
http://dx.doi.org/10.1145/3650105.3652288
http://dx.doi.org/10.1109/ICSE-FoSE59343.2023.00008
http://dx.doi.org/10.1109/MS.2023.3248401
http://dx.doi.org/10.56038/oprd.v4i1.444

	1 Introduction and Motivation
	2 Related Work
	3 Example Application
	4 Approach
	5 Example Application Results
	6 Conclusions and Outlook

