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Abstract

Industrial production systems must continuously adapt to changes in product mix, machine states, and workforce
availability. The ability to swiftly generate new production system layouts and process plans to respond to
disruptions is essential. This work introduces a breakthrough two-stage constraint-guided diffusion model
that realizes fully automatic, hierarchical industrial layout generation with strict feasibility guarantees. An
automatic synthesis is developed by combining a plant-level flow graph with processing stations, buffer stations,
assembly and disassembly stations, together with a station-level graph capturing the detailed behavior for each
station. The framework trains two discrete diffusion models: one learns the global topology, and the other,
conditioned on station type, learns internal Petri net representations for individual stations. A projector is
defined to enforce a set of structural and dynamic constraints at every denoising step. The method delivers 100%
validity under three progressively constrained inventory scenarios and preserves 99% uniqueness according to
the Weisfeiler-Lehman hash. A complete hierarchical layout can be generated in approximately 2 seconds, and
simulation-based evaluations confirm the operational competitiveness of the generated designs.
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1. Introduction

Smart factories reconfigure material flows and resources on-line during production to adapt to disrup-
tions affecting the availability of resource and external signals. Yet, designing alternative layouts that
always meet connectivity, capacity, and control rules is still largely manual and error-prone [1, 2].

This work focuses on the problem of automatically synthesizing alternative plant layouts that respect a
set of constraints governing the use of resources and the flow of materials. Classical optimization (mixed
integer programming, graph grammars, metaheuristics) scales poorly and transfers little knowledge
across projects [3, 4]. Graph neural networks improve component recommendation [5] but cannot
generate fully valid plants. Discrete diffusion models, originally devised for images and later extended
to categorical data [6, 7], have now reached state-of-the-art graph synthesis by denoising noisy samples
and projecting each intermediate step onto the feasible set[8, 9]. Yet existing work is limited to
flat, homogeneous graphs with a few dozen nodes and ignores the hierarchical semantics crucial to
manufacturing [10, 11].

We close this gap with a constraint-guided hierarchical diffusion framework. An entire plant is
abstracted as a directed graph whose nodes are processing machines, buffers, assembly machines, and
disassembly machines. Every non-buffer station embeds a Petri net that captures local concurrency,
blocking, and resource contention [12, 13]. Diffusion models are developed to generate at plant-level
the global topology of the layout, while three type-conditioned chains simultaneously generate at
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lower level the details of each station using Petri net formalism. Two hard projectors act after every
reverse step: the industrial projector enforces machine-buffer pairing and correct in/out degrees for
assembly and disassembly machines; the Petri projector guarantees strict place—transition alternation.
The sample thus remains inside the feasible set throughout the trajectory.

Experiments on 300 synthetic factories show that the model delivers 100% validity, 86-99% structural
uniqueness, and realistic throughput—energy trade-offs. Omitting the projectors reduces validity below
1%, confirming their necessity. To our knowledge, this is the first diffusion approach that unifies
multi-level industrial topology synthesis and embedded control-logic generation, paving the way for
fully automatic, constraint-aware factory design in the Al era.

2. Methodology

Diffusion background. Let z; be a categorical encoding of a graph (node labels and adjacency). A
discrete forward kernel ¢(z;,1 | z;) = (1 — ) z; + f;u, with u the uniform distribution over the K
categories (here K is the number of possible node/edge classes), progressively randomizes the graph for
t = 0,...,T-1. The reverse process learns py(z;_1 |z;) = Cat{og(z;t)), where oy is the neural network
that outputs logits for the Categorical distribution, and samples by denoising from zr~u back to z,. In
our setting z = (X,Y) combines the station types X and the edge tensor Y.

Hierarchical plant representation. We formally define our modeling framework as follows. A
factory layout is a two-level directed graph G = (V, E, y, §): the plant layer contains n stations labeled
by ye{processing machine, buffer, assembly machine, disassembly machine} and each non-buffer station
embeds a Petri net P, = (V,, E,, §) with d € {place, transition}. Seven hard rules (degree limits, buffer
isolation, acyclic flow, place—transition alternation, etc.) define the feasibility set F.

Dual diffusion with hard projection. First, at the plant level a lightweight graph-transformer (two
TRANSFORMERCONV layers, d,=12) predicts updated logits for station labels and inter-station edges;
the industrial projector I, then clips or flips entries so that global constraints—one-to-one process-
ing—-buffer pairs, correct in/out degrees for assembly and disassembly machines, and the prohibition of
buffer—buffer arcs—already hold before the next iteration. At the station level three identical denoisers,
each conditioned on its parent’s type, generate the internal Petri nets of processing, assembly, and
disassembly machines; the Petri projector I,,¢; removes self-loops and enforces the strict place«>transi-
tion alternation that guarantees safe dynamics. A buffer degenerates to a single place and therefore
bypasses the station-level chain. Projection after every reverse step keeps the sample inside &, so the
final graph is always valid.

With a random timestep t€{0, ..., T-1} we corrupt the clean graph (X,Y) into (X,,Y,) and minimize

& = CEpoge + CEedge + kL KL(p0 I Pdata) + A gprojs

where CEjode and CEeqge are cross-entropy terms that force the network to reproduce the true node
labels X and adjacency matrix Y from the noisy inputs; the KL term KL(pp | pgata) keeps the one-step
reverse marginals aligned with the empirical class frequencies, curbing early-step mode collapse; and
Zproj sums the probabilities assigned to edges that are forbidden by the industrial or Petri-net grammar,
thereby penalizing structural violations. The positive scalars Agy and A, control the strength of the KL
regularizer and the structural penalty, respectively.

Conditional sampling. Masks let us (i) free generate, (ii) pin the exact inventory, or (iii) partially
pin any subset of stations. Pinned labels remain unchanged while the stochastic chain and projectors
drive the rest toward a consistent layout. Generating 1 000 hierarchical graphs (15-40 stations each)
costs 21 min on commercial GPU.



3. Results

We produced three batches of three hundred layouts each: free generation, full inventory pinning, and
partial pinning of the stations. Every layout satisfied the seven structural rules and the Petri-net typing
checks, confirming that the projectors keep the diffusion trajectory inside the feasible set. Uniqueness,
measured with the Weisfeiler-Lehman hash, remained high: approximately 86% for the free run and
89% when the inventory was fixed, showing that the model still explores a broad solution space even
when strong priors are imposed. Maximum-mean discrepancy stayed below 1.3 in all cases, indicating
that node-type frequencies and edge density match the training distribution (Table 1).

Table 1

Structural quality of the 300 generated layouts per setting.
Mode Valid (%) WL-Uniq (%) MMD ]
E1: free 100 86.3 0.95
E2: all-pinned 100 99.3 1.21
E3: partial 30 % 100 93.0 1.33

Operational realism was gauged with a discrete-event simulator that ran each plant for ten thousand
time steps with stochastic, type-specific processing times. Throughput and energy use were recorded at
every tick. As Figure 1 shows, the generated layouts cover the same throughput-versus-energy frontier
as the training set: fully pinned samples cluster on the energy-efficient side, whereas free samples
explore a broader range, including high-throughput, high-energy outliers. These results indicate that
the model produces layouts that are not only structurally valid but also operationally plausible.

Normalized Throughput vs Energy Consumption (10,000 Time Step Simulation)
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Figure 1: Throughput-energy trade-off for the 300 layouts in each mode compared with the training baseline.
The training samples are represented in red color. The figure shows diversity in terms of energy and throughput
of the generated layouts compared to the training samples.

4. Conclusion

We presented a hierarchical diffusion framework that combines plant-level and station-level gener-
ators with hard projectors, producing industrial layouts that are valid and semantically consistent
at every step. Systematic ablations confirmed that the structural projector is essential for handling
the combinatorial constraints, while a modest network width of six to twelve hidden units already
delivers high structural fidelity and realism. Complementary simulation-based evaluations further show
that the generated layouts achieve favorable throughput and energy efficiency, even without explicit
performance supervision.



Future research will scale the approach to real factory data and investigate adaptive, learnable
constraint sets. In particular, recent large-language-model reasoning could be leveraged to express
context-sensitive semantic rules on demand, giving designers even greater flexibility and precision
when generating industrial plant layouts.
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