CEUR-WS.org/Vol-4088/paper_251.pdf

C

CEUR

Workshop
Proceedings

ELoader: A Web Application for Event Log Selection
and Preparation for Neural Networks

Henryk Mustroph*, Michel Kunkler and Stefanie Rinderle-Ma

Technical University of Munich, TUM School of Computation, Information and Technology, Garching, Germany

Abstract

One essential step in building reproducible and comparable results in deep learning, while also supporting
custom neural network designs, is unified data selection and preparation. For neural network-based
process monitoring applications, where the underlying data are primarily event logs, only a few Python
libraries support unified event-log selection and preparation. However, there is no practical tool that
provides these functionalities in an intuitive manner. Therefore, we present ELoader, a prototype web
application that enables users to select an event log, prepare it, and download the resulting training,
validation, and test sets as Python pickle files bundled in a . zip package for direct use in neural networks.

Keywords
Event Log, Data Selection and Preparation, Neural Network, Web Application

Metadata description Value

Tool name ELoader

Current version 1.0

Legal code license GNU Lesser General Public License v3.0

Languages (libraries) used Frontend: JavaScript (React.js), Backend: Python (FastAPI, PyTorch)
Web App URL https://power.bpm.cit.tum.de/eloader/

Source code repository https://github.com/ProbabilisticSuffixPredictionLab/eloader_webapp_pub
Screencast video https://lehre.bpm.in.tum.de/~kunkler/icpm_2025_demo.mp4

1. Introduction

In deep learning applications, reproducibility of results and fair comparison can be ensured
only when the same data are used and the data preparation process is consistent. This also
applies to process monitoring tasks, such as predictive process monitoring (PPM), where custom
neural networks (NNs) trained on event logs are compared against each other [1]. Therefore, [1]
recognize that one of the future research goals of PPM is to focus not only on standard evaluation
metrics but also on standardized event log selection and preparation. In this context, data
selection refers to using the same event logs across comparable approaches. Data preparation is
the umbrella term for preprocessing (e.g., cleaning, feature extraction, normalization), encoding

ICPM Doctoral Consortium and Demo Track 2025, October 20-24, 2025, Montevideo, Uruguay

*Corresponding author.

& henryk.mustroph@tum.de (H. Mustroph); michel.kunkler@tum.de (M. Kunkler); stefanie.rinderle-ma@tum.de
(S. Rinderle-Ma)

@ 0009-0005-1946-1979 (H. Mustroph); 0000-0002-1920-7322 (M. Kunkler); 0000-0001-5656-6108 (S. Rinderle-Ma)
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://power.bpm.cit.tum.de/eloader/
https://github.com/ProbabilisticSuffixPredictionLab/eloader_webapp_pub
https://lehre.bpm.in.tum.de/~kunkler/icpm_2025_demo.mp4
mailto:henryk.mustroph@tum.de
mailto:michel.kunkler@tum.de
mailto:stefanie.rinderle-ma@tum.de
https://orcid.org/0009-0005-1946-1979
https://orcid.org/0000-0002-1920-7322
https://orcid.org/0000-0001-5656-6108
https://creativecommons.org/licenses/by/4.0

(e.g., numerical and categorical), and splitting into training, validation, and test sets. Consistent
data preparation is essential for evaluating an NN’s performance across different approaches.
For example, while most PPM approaches rely on common event logs, such as those from the
Business Process Intelligence Challenges (BPICs), some still use other logs, including private or
non-shareable ones [2, 3]. This variety increases bias and complicates fair comparison across
methods [4]. Existing work has addressed unifying event log selection and preparation in
process monitoring by developing Python libraries or extensions. One example is VERONA [4],
a Python library designed to support reproducibility and comparability in NN-based process
monitoring, which provides users with event log selection and preprocessing functionalities.
Additionally, there is a Scikit-learn library extension for process mining [5]. However, while
Python libraries offer flexibility and customization for data preparation, they require time to
read the documentation and careful environment setup to ensure function calls work correctly.
In contrast, practical tools such as web applications hide this complexity and require less effort
to set up. Nirdizati [6] is a web-based toolkit for PPM that lets users upload, prepare, and
directly train machine learning models on event logs. It targets practitioners building low-code
prediction models and dashboards for decision making, rather than selecting open-source event
logs and downloading the prepared datasets for custom NN input.

At present, there is no practical tool that enables easy event log selection and preparation.
Such a tool would allow custom NNs to be implemented, trained, and tested without the need to
develop a dedicated data preparation pipeline, and it would also support the use of standardized
datasets for comparing different process monitoring approaches, such as in PPM. This work
presents ELoader, a web application prototype that simplifies the preparation of open-source
event logs for training NNs. Users can select an event log and define various preprocessing
parameters, e.g., which event attributes should be encoded, or which event attributes should
additionally be obtained via feature engineering. Thereafter, the event log is encoded and split
into a training, validation, and test set. The user then receives a single .zip package that
contains the training, validation, and test sets, each stored as a pickled PyTorch dataset. The
tool is intended for practitioners and researchers who aim to build custom or reimplement
existing NN for process monitoring applications without the need to implement their own
data preparation pipeline.

2. ELoader Web Application

This section starts with the functionalities of ELoader, followed by its architecture, implementa-
tion details, design, and a description of the user interface.

2.1. Functionality

The functionality of ELoader is split into event log selection, preparation, and splitting.
Selection: The application is linked to a directory containing all event logs for data selection.
We aim to provide a web application that converts openly accessible and widely used event logs
for NN-based process monitoring tasks, thereby simplifying and unifying event log selection.
Preparation: For data preparation, we use the same procedure as described in [7]. We apply
feature engineering on the timestamp value by introducing a case elapsed time attribute,

representing the time elapsed since the first event in the case, an event elapsed time
attribute, representing the time since the last event within the same case (with the value set to 0
for the first event), a day of the week attribute, and a time of day attribute. The latter two
features are incorporated due to the potential influence of periodic trends on the future course
of a process. For example, in a company that operates only on weekdays, when an activity is
completed on Friday evening, the next activity is unlikely to occur before Monday. Then, we
apply standard scaling to all continuous event attributes, except for the raw timestamp, and
encode missing values as 0. Following [3], we also apply input padding to facilitate batch training.
Each case is padded with zeros at the beginning to a fixed length, the so-called window size,
determined by the maximum case length in the event log, excluding the top 1.5% of the longest
cases plus the minimum suffix size. For every categorical event attribute with K unique category
classes, we add an additional NA (not available) class for missing values and an unknown class.
For the event label attribute we added an end of sequence token (EOS) category class. We then
apply for each categorical event attribute index encoding. The user can specify a minimum
suffix size (i.e., the length of the target event sequence). Each case is then transformed into a
list of prefix—suffix samples stored as one concatenated tensor list. Starting with a prefix of
length one and increasing until the prefix length reaches case length. The corresponding suffix
consists of the remaining events of the case, followed by EOS tokens as needed to ensure it is at
least the minimum suffix size. The suffix length decreases from case length — 1 down to 0, with
EOS tokens used to pad the suffix if the actual number of remaining events is smaller than the
minimum suffix size. For all other event attributes, categorical (other than the event label) and
continuous, the values from the last valid event in the suffix are copied forward.

Suppose a case consists of the events [A, B, C, D], and the minimum suffix size is set to 2.
The resulting prefix-suffix samples are: prefix [A] with suffix [B, C, D], prefix [A, B] with suffix
[C, D], prefix [A, B, C] with suffix [D, FOS], and prefix [A, B, C, D] with suffix [EOS, EOS].
This type of case encoding can be used for full-sequence training (i.e., suffix prediction) as in
[7, 3], as well as for next-activity training (i.e., next-activity prediction) as in [8].

Split: The data are then split into training, validation, and test sets according to user-defined
percentages, ensuring a random yet balanced distribution. When the same event log and split
percentages are used, the resulting sets remain identical.

2.2. Architecture and Implementation

Figure 1 depicts the architecture of the ELoader web application. Users access the user in-
terface (UI), which is implemented in the frontend using the React.js JavaScript library and
Material Ul. Communication between the frontend and backend is handled via a REST API The
backend is implemented in Python and is organized into two packages: the Communication
package, which manages communication with the frontend using the FastAPI library, and
the EL_Functionality package, which handles all event log preparation functionality us-
ing PyTorch. Each .zip package returned by the frontend contains a train, validation and
test set as a Python pickle file ' (. pk1). Pickle files are encoded byte streams of Python ob-
jects %) and can be easily stored, read, and decoded using just a few lines of Python code.

'https://docs.python.org/3/library/pickle.html, accessed on 2025-09-23
*https://docs.pytorch.org/docs/stable/tensors.html, accessed on 2025-09-23

https://docs.python.org/3/library/pickle.html
https://docs.pytorch.org/docs/stable/tensors.html

. - Access
Frontend (JavaScript: React.js, MUI) }f—— uI _[ﬁ::l)

REST API

Backend (Python):'”v
EventLoglLoader

EL_Functionality Communication
(PyTorch) (FastAPI)

Event Default

preparing
Logs properties

Figure 1: ELoader architecture.

Each set is represented as an object of our custom EventLogDataset class, which provides
three main attributes: all_categories, encoder_decoder, and tensor_list. The all_categories at-
tribute stores a tuple of two lists with the same structure, one for categorical event at-
tributes and one for continuous event attributes. Each list contains multiple tuples, one
per event attribute. Each tuple consists of: A string with the attribute name, an integer
specifying the number of labels (for continuous attributes this is always 1), and, a dictio-
nary mapping each category class to its corresponding index ID (for continuous attributes
the dictionary is empty). The encoder_decoder attribute contains configuration information
such as the window size, minimum suffix size, and the parameters for standardization and
de-standardization of continuous event attributes which can be accessed, for example, via
dataset.encoder_decoder.continuous_encoders[’case_elapsed_time’] for the
case elapsed time. The tensor_list attribute contains a tuple of three elements: the
first holds the tensors for categorical event attribute values, the second holds the tensors
for continuous event attribute values, and the third stores the case IDs corresponding to
those tensors. Each event attribute has its own tensor. Each tensor is a matrix with shape,
number of samples x window size, while the list of case IDs has length equal to the number of
samples.

The encoded data or the decoded plain data can both be accessed by calling the EventLog-
Dataset class that is serialized in the pickle files. An example is provided in the main. py that is
included in every . zip package.

2.3. Design and User Interface

Figure 2 shows the main page of ELoader. In the first step, the user can select an event log from
the list to be prepared. Once an event log is chosen, the boxes for step two, data preparation,
open. The first box displays all individual event log—specific case, event label, timestamp, date
format, and time feature attribute names. These values are required for the data preparation
functionalities and cannot be changed by the user. The second box contains all custom input
fields, which are pre-filled with default values but can be modified by the user. Here, the user

can set the validation set size and the test set size (values between 0 and 1). Additionally, the
user can choose the minimum suffix size (a value between 1 and 10). Finally, the user can select
which categorical and continuous event attributes should be included in the train validation
and test sets. Here only valid event attribute names are allowed. When the user has filled in all
data preparation fields, the Start Encoding button can be pressed to begin the preprocessing,

encoding, and splitting. When the process is finished, the training, validation, and test sets are
downloaded in a . zip package.

Step 1: Select the event log ®

Choose the event log, you want to prepare.

Helpdesk

Step 2.1: Event log specific inputs @

Fixed, standard parameters for chosen log.

Other event log properties.

Step 2.2: Custom inputs ®

Configure parameters for custom encoding.

0,15 0,2

Activity, Resource, VariantIndex, seriousness, customer, product, responsible_section, seriousness_2,
service_level, service_type, support_section, workgroup

case_elapsed_time, event_elapsed_time, day_in_week, seconds_in_day

START DATA PREPARATION

Figure 2: Event log selection, preparation and loading: Main screen.

3. Discussion and Future Work

We tested the functionality of ELoader on multiple datasets, including several BPIC event logs, the
Helpdesk and the Sepsis event log. As expected, the computation time and resource consumption
for data preparation increase with the log size, which also affects the size of the resulting .zip
package. Furthermore, we used the underlying ELoader data preparation functionality in our
ICPM 2025 paper Probabilistic Suffix Prediction of Business Processes, where it was applied to
three different models, our own suffix prediction model [7], the next-activity/suffix prediction
model of [8], and the remaining-time prediction model of [9]. These experiments demonstrate
that ELoader is sufficiently generic to be applied to various PPM tasks. However, ELoader is not
yet complete, and several additional functionalities are planned for future development, such as

temporal data splitting as described in [10]. Moreover, we intend to gather further requirements
from practitioners, researchers, and potential users during the ICPM demonstration to guide the
extension and improvement of the tool. Nevertheless, the first prototype already enables easy
and efficient event log selection, preparation, and loading for direct input into NNs for PPM.
This supports more reproducible and comparable evaluations of different NN-based process
monitoring methods.

Declaration on Generative Al

During the preparation of this work, we used ChatGPT in order to: Grammar and spelling
check, paraphrase, and reword. After using this tool, we reviewed and edited the content as
needed and take full responsibility for the publication’s content.

References

[1] P. Ceravolo, M. Comuzzi, J. De Weerdt, C. Di Francescomarino, F. M. Maggi, Predictive
process monitoring: concepts, challenges, and future research directions, Process Science
1(2024) 2.

[2] N. Mehdiyev, M. Majlatow, P. Fettke, Augmenting post-hoc explanations for predictive
process monitoring with uncertainty quantification via conformalized monte carlo dropout,
Data Knowl. Eng. 156 (2025) 102402. doi:10.1016/7J .DATAK.2024.102402.

[3] B.Wuyts, S. K. L. M. vanden Broucke, J. D. Weerdt, Sutran: an encoder-decoder transformer
for full-context-aware suffix prediction of business processes, in: ICPM, 2024, pp. 17-24.
doi:10.1109/ICPM63005.2024.10680671.

[4] P. Gamallo-Fernandez, E. Rama-Maneiro, J. C. Vidal, M. Lama, VERONA: A python library
for benchmarking deep learning in business process monitoring, SoftwareX 26 (2024)
101734. d0i:10.1016/J . SOFTX.2024.101734.

[5] R.S. Oyamada, G. M. Tavares, S. B. Junior, P. Ceravolo, A scikit-learn extension dedicated
to process mining purposes, in: Demonstration Track CooplS, 2023, pp. 11-15. URL:
https://ceur-ws.org/Vol-3552/paper-3.pdf.

[6] W. Rizzi, C. D. Francescomarino, C. Ghidini, F. M. Maggi, Nirdizati: an advanced pre-
dictive process monitoring toolkit, J. Intell. Inf. Syst. 63 (2025) 259-291. doi:10.1007/
S10844-024-00890-09.

[7] H. Mustroph, M. Kunkler, S. Rinderle-Ma, An uncertainty-aware ED-LSTM for probabilistic
suffix prediction, CoRR abs/2505.21339 (2025). doi:10.48550/ARXIV.2505.21339.

[8] M. Camargo, M. Dumas, O. G. Rojas, Learning accurate LSTM models of business processes,
in: BPM, 2019, pp. 286-302. d0i:10.1007/978-3-030-26619-6_19.

[9] H. Weytjens, J. D. Weerdt, Learning uncertainty with artificial neural networks for
predictive process monitoring, Appl. Soft Comput. 125 (2022) 109134. doi:10.1016/7 .
ASOC.2022.109134.

[10] H. Weytjens, J. D. Weerdt, Creating unbiased public benchmark datasets with data leakage
prevention for predictive process monitoring, in: BPM Workshops, volume 436, 2021, pp.
18-29. d0i:10.1007/978-3-030-94343-1_2.

http://dx.doi.org/10.1016/J.DATAK.2024.102402
http://dx.doi.org/10.1109/ICPM63005.2024.10680671
http://dx.doi.org/10.1016/J.SOFTX.2024.101734
https://ceur-ws.org/Vol-3552/paper-3.pdf
http://dx.doi.org/10.1007/S10844-024-00890-9
http://dx.doi.org/10.1007/S10844-024-00890-9
http://dx.doi.org/10.48550/ARXIV.2505.21339
http://dx.doi.org/10.1007/978-3-030-26619-6_19
http://dx.doi.org/10.1016/J.ASOC.2022.109134
http://dx.doi.org/10.1016/J.ASOC.2022.109134
http://dx.doi.org/10.1007/978-3-030-94343-1_2

	1 Introduction
	2 ELoader Web Application
	2.1 Functionality
	2.2 Architecture and Implementation
	2.3 Design and User Interface

	3 Discussion and Future Work

