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Abstract
Procedural content generation often requires satisfying both designer-specified objectives and adjacency con-
straints implicitly imposed by the underlying tile set. To address the challenges of jointly optimizing both
constraints and objectives, we reformulate WaveFunctionCollapse (WFC) as a Markov Decision Process (MDP),
enabling external optimization algorithms to focus exclusively on objective maximization while leveraging WFC’s
propagation mechanism to enforce constraint satisfaction. We empirically compare optimizing this MDP to
traditional evolutionary approaches that jointly optimize global metrics and local tile placement. Across multiple
domains with various difficulties, we find that joint optimization not only struggles as task complexity increases,
but consistently underperforms relative to optimization over the WFC-MDP, underscoring the advantages of
decoupling local constraint satisfaction from global objective optimization.
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1. Introduction

Procedural Content Generation (PCG) automatically creates game content through algorithmic methods
often leveraging search or machine learning-based methods (PCGML). Learning-based methods in
particular have enabled the automated creation of game content that optimizes designer-specified
high-level objectives [1, 2, 3, 4, 5] that would be difficult to express or satisfy through traditional
algorithms such as WaveFunctionCollapse (WFC) [6]. However, many existing learning-based PCG
approaches are primarily applied to visually simplistic domains where the tile set imposes limited
adjacency constraints [1, 2, 3, 4]. We suspect that even methods which already produce satisfactory
results in a domain with more aesthetic adjacency constraints like Mario [7, 8, 9], would achieve
higher robustness and efficiency from offloading the learning of the adjacency rules. We hypothesize
that optimization-based PCG methods struggle with complex aesthetic adjacency rules due to the
combinatorial explosion of valid tile configurations. To test this hypothesis, we compare traditional
approaches that must learn these constraints implicitly against our novel formulation that leverages
WFC’s constraint propagation mechanism.

While WFC is inherently limited in its ability to optimize global functional properties such as
playability, it excels at enforcing fine-grained aesthetic coherence by propagating preferences over
possible tile placements via constraint solving [10, 11]. By reformulating WFC as a Markov Decision
Process (MDP) and embedding an explicit objective function within this framework, we enable a
more generalizable approach to guiding content generation toward designer-specified goals while
simultaneously maintaining adherence to aesthetic adjacency constraints.
We optimize this MDP by evolving an action sequence using 𝜇 + 𝜆 evolution. To understand the

implications of the MDP’s explicit adjacency constraint guarantees, we compare against evolving the
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tiles of the final artifact directly, via both naive 𝜇 + 𝜆 evolution and Feasible Infeasible 2-Population
(FI-2Pop) [12], where the optimization algorithm must implicitly learn to resolve adjacency violations.

We evaluate these optimization strategies across 3 domains. The binary domain, adapted from Khalifa
et al., imposes desired path length constraints as a simplified proxy for functional playability. Notably,
varying the target path length allows us to dynamically adjust problem difficulty, enabling a systematic
evaluation of how each optimization algorithm scales with increasing task complexity. On the other
hand, the biome domains define objective functions that capture global topographic features of distinct
biomes, guiding optimization toward semantically coherent and visually pleasing patterns. Finally, we
integrate both binary and biome objectives, requiring solutions that jointly optimize metrics pertaining
to form and function, thereby reflecting the multi-objective demands typical of real-world game design.
Across all domains and desired path lengths, non-MDP methods (which incorporate WFC-style

constraints into objective functions instead of leveraging them via an MDP) perform noticeably worse;
evolving the MDP action sequence leads to faster and more consistent convergence. However, on
the most difficult objectives, evolving the action sequence converges very inconsistently, hinting at
exploration limitations of 𝜇 + 𝜆 evolution.
Concretely, we offer the following contributions:

• We demonstrate that forcing learning algorithms to learn local adjacency constraints leads to
degraded performance in highly constrained domains.

• We present a novel formulation of WFC as an MDP, along with a corresponding gym [13] envi-
ronment to facilitate the evaluation of alternative optimization algorithms.

2. Related Work

2.1. WaveFunctionCollapse Algorithm and Modifications

2.1.1. WaveFunctionCollapse

WFC is an algorithm for procedural content generation, particularly for tile-based environments. It can
create coherent and visually consistent outputs based on simple input examples or constraints [14]. The
algorithm’s core functionality resembles constraint satisfaction with a quantum mechanics-inspired
approach: maintaining a superposition of possible states for each tile that gradually “collapses” to
definite states through observation and propagation steps [15].
The algorithm operates in two main modes: the simple tiled model, which uses explicit adjacency

rules, and the overlapping model, which automatically extracts patterns from example inputs [16].
In the both models, WFC can be seen as a form of self-supervised learning that learns a distribution
from minimal examples—often just one—and generates similar content by maintaining the learned
adjacency patterns. While WFC excels at maintaining local adjacency constraints, it struggles with
global optimization objectives that are critical for gameplay, such as ensuring level solvability or
balanced resource distribution [10].

2.1.2. Enhancements to WaveFunctionCollapse

Researchers have developed numerous modifications to improve WFC’s capabilities beyond its original
formulation. Karth and Smith provide a comprehensive analysis of WFC as a constraint satisfaction
problem, establishing its theoretical foundations and positioning it within the broader context of PCG
approaches.

To improve scalability to large environments, Nie et al. proposed Nested Wave Function Collapse (N-
WFC), which decomposes the generation process into nested subproblems. This approach significantly
reduces time complexity from exponential to polynomial while maintaining consistency across the
generated content. For non-grid environments, researchers have developed graph-based extensions
of WFC that enable content generation for arbitrary topologies, enabling applications to 3D worlds
and non-uniform structures [10]. LNU introduce additional extensions to WFC including the path



constraint, which enforces global connectivity between specified tiles—addressing one of WFC’s key
limitations regarding global structure control. This path constraint is distinct from the path-length
objective optimized in the present work in that it focuses on paths between designer-specified tiles
as opposed to any two most distant tiles on the map, and only ensures the existence of such a path,
rather than making guarantees about its length. This distinction is significant because optimizing
path length requires global reasoning about the entire map structure, which traditional WFC cannot
perform. While the path constraint ensures connectivity exists, our work specifically optimizes the
longest shortest path between any two points, creating a more challenging optimization problem
that must balance local tile placement decisions with their global impact on path topology. 1 Cheng
et al. incorporates designer-driven heuristics to steer the generation process toward specific aesthetic
or functional outcomes by introducing an automatic rule system along with global, multi‑layer, and
distance constraints to provide designers with more control over level layouts [6]. Yet the approach
hinges on enumerated, non-local constraints—tile caps and anchored cells, hard distance windows
among entities, and layer-locking of assets—that must be re-engineered for each domain, limiting
generality compared with an objective-based formulation that subsumes these preferences in a unified
reward.

2.2. Evolutionary Approaches to PCG

2.2.1. Evolutionary Algorithms

Evolutionary algorithms, widely applied to PCG problems, are a flexible approach to searching the space
of possible game content while optimizing for designer-specified objectives [20]. These approaches
typically encode content as genomes that evolve through operations such as crossover and mutation,
with fitness functions guiding the search toward desired properties.

2.2.2. FI-2Pop for Constrained Optimization

The Feasible-Infeasible Two-Population (FI-2Pop) genetic algorithm [12], is a solution to constrained
optimization problems that maintains two separate populations: one of feasible solutions that optimize
the objective function, and another of infeasible solutions that minimize constraint violations. This
approach has proven particularly effective for PCG applications where content must simultaneously
satisfy hard constraints (e.g., playability) while optimizing soft objectives (e.g., challenge or balance).
Sorenson and Pasquier applied FI-2Pop to procedural level generation, creating game maps that

satisfy playability constraints while optimizing for designer preferences. Later, Liapis et al. extended
FI-2Pop for constrained novelty search in game level design. This approach uses novelty metrics rather
than objective functions to drive search, resulting in a broader exploration of the feasible design space.

2.3. Procedural Content Generation via Reinforcement Learning (PCGRL)

Khalifa et al. introduced PCGRL as a novel approach to procedural content generation that frames
level design as a sequential decision-making process optimized through reinforcement learning. By
formulating level generation as a Markov Decision Process (MDP), PCGRL enables an agent to learn a
policy that maximizes expected level quality through incremental modifications. This approach can
operate without human-authored examples and generates content extremely quickly once trained.

3. Problem Domain

All maps and thus objective functions were constructed based on a small subset of Biome Tileset Pack
B - Grassland, Savannah, and Scrubland [24] which offers combinations of different grass, path, and

1We note that future work could attempt to optimize path-lengths between specific tiles with a simple modification to our
path-length objective function.



Figure 1: Biome Tileset Pack B - Grassland, Savannah, and Scrubland. Unused tiles are darkened. Path tiles are
marked in orange, grass tiles are marked in green, water tiles are marked in blue, and hill tiles are marked in
brown. The water center tile is marked in light blue.

(a) Path Length: 40 (b) Path Length: 50 (c) Path Length: 60

Figure 2: Optimizing for target path-lengths in the Binary domain. The red line shows the longest shortest path.

water tiles. We used a subset of the tiles shown in Figure 1. We generate the adjacency rules via manual
human labeling, though they could also be extracted from an input image.

3.1. Binary

The binary domain (Figure 2), originally introduced in PCGRL [3], tasks the generator with modifying
an existing map composed of solid and empty tiles to increase the longest shortest path between any
two empty tiles by at least 20 tiles, while ensuring full connectivity of the empty space. In contrast,
our formulation requires generating valid maps entirely from scratch that satisfy prescribed path
length constraints, rather than modifying preexisting layouts. We also impose a stricter requirement,
penalizing deviations from the target by requiring the generated map to achieve a path length of exactly
𝑃. Formally, for a generated map with longest shortest path length 𝑝, the objective function awards a



score of −|𝑝 − 𝑃|. While the binary domain in PCGRL comprises a simple “binary” tile-set of wall and
empty tiles, we use a more sophisticated tileset in which adjacent tiles—e.g. path and grass tiles—can
share straight or rounded edges, creating visually smooth transitions between tile-types.

3.2. Biome/Binary Hybrid

The hybrid domain adds complexity by dictating the biome surrounding the binary path to better
simulate the needs of real game maps. We consider 2 biomes which specify different distributions
and arrangements of tiles. All percentage calculations are taken from the tiles of the final artifact, not
including those used in binary path calculations. For example, if the objective specifies 50% water tiles,
this means 50% of the tiles that are not path tiles must be water. We specify the biome objectives below.

• River (𝑜𝑟).
Let

𝑟𝑟 the number of connected river regions,
ℓ the length of the current river path,
𝑛𝑐 the number of water “center” tiles,
𝑟𝑙 the number of connected land regions.

We then define:

𝑜𝑟 = (1 − 𝑟𝑟) +min(0, ℓ − 35)
− 𝑛𝑐
+min(0, 3 − 𝑟𝑙) .

(1)

The objective attains its maximum value of 0 exactly when all of the following hold:

– 𝑟𝑟 = 1 (exactly one contiguous river region),
– ℓ ≥ 35 (river path length of at least 35 tiles),
– 𝑛𝑐 = 0 (no fully surrounded water tiles),
– 𝑟𝑙 ≤ 3 (no more than three separate land regions).

Here, the (1 − 𝑟𝑟) term enforces a single connected channel, the min(0, ℓ − 35) term rewards
reaching the target length of 35 tiles, the −𝑛𝑐 penalty encourages a thin, winding river (few
interior water tiles), and the cap on 𝑟𝑙 discourages excessive fragmentation of the land to prevent
it from interrupting the river (Figure 3a).

• Field (𝑜𝑓) .
Let

𝑛𝑤 the number of water tiles,
𝑛ℎ the number of hill tiles,
𝑔 the percent of grass tiles,
𝑓 the percent of flower tiles.

We then define:

𝑜𝑓 = − 𝑛𝑤 − 𝑛ℎ +min(0, 𝑔 − 20)

+min(0, 𝑓 − 20) .
(2)

The objective attains its maximum value of 0 exactly when all of the following hold:

– 𝑛𝑤 = 0 (no water or shore tiles),
– 𝑛ℎ = 0 (no hill tiles),
– 𝑔 ≥ 20 (at least 20% of tiles are grass),
– 𝑓 ≥ 20 (at least 20% of tiles are flowers).



(a) River Biome (b) Field Biome

Figure 3: Outputs resulting from the optimization of the Biome objectives

Here, the−𝑛𝑤 and−𝑛ℎ penalties enforce a clear, unbroken grassy field, while themin(0, 𝑔−20) and
min(0, 𝑓 −20) terms ensure minimum coverage of grass and flowers. Together, these components
encourage the generation of open grasslands with sufficient floral detail (Figure 3b).

Since all objective functions have a max reward of 0, we can enforce both binary and biome features
by optimizing over the sum of the two objective functions. As such, we get the following objective
functions:

• hybrid river/binary: 𝑜𝑟𝑏 = −|𝑝 − 𝑃| + 𝑜𝑟
• hybrid field/binary: 𝑜𝑓 𝑏 = −|𝑝 − 𝑃| + 𝑜𝑓.

4. Methods

All optimization methods have various hyperparameters detailed in Section 9 of the Appendix.

4.1. Direct Map Evolution

These methods operate directly on the final artifact and do not leverage WFC. Instead, the optimization
process must learn to satisfy the adjacency rules. For a target map of length ℓ and width 𝑤, the genotype
is represented as a 2D array of size ℓ × 𝑤, where each entry contains an integer corresponding to a
tile index in the tileset. For example, if position (𝑥, 𝑦) contains value 𝑧, then the 𝑧th tile is placed at
coordinate (𝑥, 𝑦) in the artifact, irrespective of whether this placement violates adjacency constraints.

Baseline Evolution. The baseline evolutionary algorithm treats each map genotype as an individual
and applies standard genetic operators with a penalized fitness that subtracts adjacency violations from
raw objective function (Algorithm 1). Given objective score 𝑜 and 𝑣 adjacency violations, the individuals
will receive a fitness of 𝑜 − 𝑣. Over 𝐺 generations it maintains a population of size 𝑁, selecting the top
𝜌𝑁 individuals by fitness each round.

FI-2Pop. FI-2Pop [12] attempts to leverage adjacency violations as an exploration medium by main-
taining two equal–sized subpopulations, feasible (𝐹) and infeasible (𝐼), and applies tailored selection
criteria to each: objective maximization in 𝐹 and violation minimization in 𝐼 (Algorithm 2). Since 𝐼 is
not constrained by the objective function, it is free to explore the boundaries of infeasibility where
optimality may lie. The offspring are generated separately to replenish each subpopulation to size 𝑁/2.



Algorithm 1 Baseline Evolution
Input: generations 𝐺, population size 𝑁, survival rate 𝜌
Output: Best genome found

Initialize population 𝑃 with 𝑁 random genomes
Each genome 𝑥 has an objective score 𝑜𝑥, adjacency-constraint violation penalty 𝑣𝑥, and fitness 𝑓𝑥.
for 𝑔 = 1 to 𝐺 do

for all genome 𝑥 ∈ 𝑃 do
(𝑜𝑥, 𝑣𝑥) ← Evaluate(𝑥)
𝑓𝑥 ← 𝑜𝑥 − 𝑣𝑥

end for
elites ← top ⌈𝜌𝑁 ⌉ genomes in 𝑃 by 𝑓𝑥
offspring ← Reproduce(elites, 𝑁 − |elites|)
𝑃 ← elites ∪ offspring

end for
return best feasible genome in 𝑃

Algorithm 2 FI‑2Pop Evolution
Input: generations 𝐺, population size 𝑁, survival rate 𝜌
Output: Best genome found

Initialize population 𝑃 with 𝑁 random genomes
Initialize empty sets 𝐹 and 𝐼
for 𝑔 = 1 to 𝐺 do

for all genome 𝑥 ∈ 𝑃 do
(𝑜𝑥, 𝑣𝑥) ← Evaluate(𝑥)
if 𝑣𝑥 = 0 then

𝐹 ← 𝐹 ∪ {𝑥}
else

𝐼 ← 𝐼 ∪ {𝑥}
end if

end for
𝐹𝑠 ← top ⌈𝜌 |𝐹 |⌉ genomes in 𝐹 by objective score (𝑜𝑥)
𝐼𝑠 ← top ⌈𝜌 |𝐼 |⌉ genomes in 𝐼 by lowest violation (𝑣𝑥)
𝑂𝐹 ← Reproduce(𝐹𝑠,

𝑁
2 − |𝐹𝑠|)

𝑂𝐼 ← Reproduce(𝐼𝑠,
𝑁
2 − |𝐼𝑠|)

𝑃 ← 𝑂𝐹 ∪ 𝑂𝐼
end for
return best genome in 𝐹

4.2. MDP Representation.

By formalizing WFC as a Markov Decision Process (MDP), we leverage its guarantees to offload
the burden of learning adjacency constraints from the optimizer. This reformulation transforms the
generation problem into a sequential decision process where every action results in a valid intermediate
configuration.

4.2.1. State Representation

We define each state 𝑠𝑡 as the current configuration of the WFC grid at timestep 𝑡. For a target map of
size ℓ × 𝑤 with 𝑛𝑡 tile types, 𝑠𝑡 is represented by an ℓ × 𝑤 × 𝑛𝑡 binary tensor 𝐺𝑡, where each depth slice
encodes the feasibility of a tile at a cell:

• 𝐺𝑡[𝑥, 𝑦 , 𝑖] = 1 indicates that tile type 𝑖 is currently feasible at cell (𝑥, 𝑦).



Algorithm 3 WFC-MDP: One Environment Step
Input: belief grid 𝐺 ∈ {0, 1}ℓ×𝑤×𝑛𝑡 , adjacency rules 𝐴, agent action (tile logits) 𝑎
Output: updated grid 𝐺′, reward 𝑟

(𝑥⋆, 𝑦⋆) ← FindLowestEntropyCell(𝐺)
𝑚 ← 𝐺[𝑦⋆, 𝑥⋆, ∶] feasibility mask at selected cell
if (𝑥⋆, 𝑦⋆) = ∅ or ∑𝑇

𝑡=1 𝑚𝑡 = 0 then
𝑟 ← −1000

end if
𝑝 ← softmax(𝑎)
for all t ∈ {1, … , 𝑛𝑡} do

if 𝑚[𝑡] = 0 then
𝑝[𝑡] ← 0

end if
end for
𝑡⋆ ← argmax 𝑝
𝐺 ← Collapse(𝐺, (𝑥⋆, 𝑦⋆) ← 𝑡⋆)
(𝐺, ok) ← PropagateConstraints(𝐺, 𝐴, (𝑥⋆, 𝑦⋆))
if not ok then

𝑟 ← −1000
else if IsFullyCollapsed(𝐺) then

𝑟 ← Objective(𝐺)
end if
return (𝐺, 𝑟)

• 𝐺𝑡[𝑥, 𝑦 , 𝑖] = 0 indicates that tile type 𝑖 is infeasible at cell (𝑥, 𝑦).

A cell is collapsed if and only if it has a one-hot feasibility vector (∑𝑛𝑡
𝑖=1 𝐺𝑡[𝑥, 𝑦 , 𝑖] = 1); otherwise it is

uncollapsed (∑𝑛𝑡
𝑖=1 𝐺𝑡[𝑥, 𝑦 , 𝑖] > 1). The MDP terminates when every cell is collapsed (equivalently, when

all ℓ × 𝑤 cells have one-hot feasibility vectors), yielding the final artifact.

4.2.2. Action Representation

At each timestep 𝑡, the action 𝑎𝑡 specifies which tile to collapse in a single uncollapsed cell (Algorithm 3).
It is parameterized as an 𝑛𝑡-dimensional logit vector, with each entry corresponding to a possible
tile; these logits lead to corresponding per tile probability after softmax. To ensure compliance with
adjacency constraints, we mask out invalid tiles by setting their probabilities to zero. The selected
action is then argmax over the probabilities, ensuring that each collapse step is constraint-respecting.
Since exactly one tile is collapsed per action, a complete map requires a sequence of ℓ × 𝑤 actions.

4.2.3. Objective Structure

We adopt a sparse objective model: intermediate states contribute no score, and only the terminal state
is evaluated using the objectives defined in Section 3. If WFC enters a contradiction where a cell has no
valid tiles remaining, the process truncates immediately and incurs a large negative objective of -1000,
thus discouraging invalid map constructions.

4.3. Evolving an Action Sequence

We use a standard 𝜇 + 𝜆 evolutionary algorithm to optimize the full sequence of WFC collapse actions
(Algorithm 4). Each individual in the population encodes a fixed-length sequence of collapse decisions,
represented as logits over the tile set at each of the ℓ × 𝑤 positions. Two genotype shapes are supported:



• 1D representation: a flat sequence of length ℓ × 𝑤 such that element at position 𝑥 is the action
applied at time step 𝑥.

• 2D representation: a grid-aligned sequence of dimensions ℓ × 𝑤, where each action’s position is
inferred from WFC’s next-collapse coordinates. Action at genotype coordinate (𝑥, 𝑦) corresponds
to collapsing the tile at (𝑥, 𝑦).

Algorithm 4 Evolving an Action Sequence
Input: generations 𝐺, population size 𝑁, survival rate 𝜌𝑠
Output: Best genome found

Initialize population 𝑃 with 𝑁 action sequences
for 𝑔 = 1 to 𝐺 do

for all genome 𝑥 ∈ 𝑃 do
𝑠 ← 𝑠0; 𝑂𝑥 ← 0; 𝑣𝑥 ← 0
for 𝑡 = 1 to ℓ × 𝑤 do

𝑎𝑡 ← 𝑥[𝑡]
(𝑠′, 𝑟𝑡) ← env.step(𝑎𝑡)
𝑂𝑥 ← 𝑂𝑥 + 𝑟𝑡
𝑠 ← 𝑠′

end for
end for
elites ← top ⌈𝜌𝑠𝑁⌉ genomes in 𝑃 by 𝑓𝑥
offspring ← Reproduce(elites, 𝑁 − |elites|)
Initialize population 𝑅 with (𝑁 − |elites|) action sequences
𝑃 ← elites ∪ offspring

end for
return best feasible genome in 𝑃

5. Results

We evaluate each optimization method across desired path lengths 10-100 in intervals of 10 for both
binary and hybrid domains. Convergence robustness is defined as the proportion of runs that achieve
the maximal reward of 0, while sample efficiency is measured by the number of generations it takes to
evolve at least one population member with reward of 0. All methods were run with a fixed sample
budget (population size = 48) to enable fair comparisons.

Table 1 reports performance across increasing path length targets in the binary domain. As expected,
longer path lengths correspond to increased difficulty as all methods show reduced convergence rates
and increased generations to convergence with rising desired path length 𝑃.

However, even at low difficulty (𝑃 ≤ 40), non-MDP baselines occasionally fail to converge. In contrast,
both MDP-based evolution strategies exhibit perfect or near-perfect convergence and require fewer
generations. This early divergence suggests that directly modeling constraint satisfaction via WFC
confers immediate robustness advantages, even in seemingly simple settings.
As 𝑃 increases, the performance gap widens. At 𝑃 = 60, non-MDP methods converge in less than

20% of runs and exhibit inefficiency when they do, with baseline requiring over 170 generations on
average. Evolution 1D and 2D remain below 60 generations and achieve convergence in 84% and 72% of
runs respectively, underscoring their superior scalability.
For 𝑃 ≥ 70, all non-MDP methods fail almost entirely. MDP methods, while less consistent, still

achieve convergence in up to 35% of runs (1D) and 15% (2D). Interestingly, the baseline was able to
converge once, in relatively few generations. This outlier suggests a rare, favorable initialization or
fortuitous stochasticity early on in the evolutionary process rather than systematic optimization success.



In the hybrid river/binary domain (Table 2), MDP-based methods again demonstrate clear robustness
advantages. For moderate difficulty (20 ≤ 𝑃 ≤ 40), 1D and 2D evolution achieve convergence in at
least 36% and 45% of runs respectively, requiring roughly 50–100 generations on average. In contrast,
baseline and fi2pop converge in at most 14% and 4% of runs, and when they do succeed, require over
80–120 generations. At 𝑃 = 50, both MDP methods maintain non-trivial success rates (≥19%) with
convergence typically within 80–100 generations, whereas baseline converges only 4% of the time and
fi2pop fails entirely. Beyond this threshold, only MDP methods achieve any convergence at all: both 1D
and 2D occasionally succeed for 𝑃 ≥ 60, though with growing variance in required generations, while
non-MDP methods collapse to zero convergence. The performance gap is more stark in Table 3 and the
hybrid field/binary domain. Non-MPD methods completely fail to converge across almost all target
path lengths.

Method Metric 10 20 30 40 50 60 70 80

evo 1d Generations 5.9±0.6 8.4±0.6 6.7±0.5 9.4±0.6 21.9±1.4 54.8±3.2 114.7±10.4 228.0±73.0
Converged% 1.00 1.00 1.00 1.00 0.97 0.84 0.35 0.02

evo 2d Generations 7.4±0.6 6.2±0.5 5.8±0.5 9.1±0.8 23.6±1.5 41.9±2.8 74.9±13.4 136.0±74.0
Converged% 1.00 1.00 1.00 0.98 0.95 0.72 0.15 0.02

baseline Generations 14.8±2.5 11.0±1.8 8.8±0.9 22.8±3.2 70.2±12.2 171.8±48.9 35 —
Converged% 0.85 0.95 1.00 0.95 0.65 0.16 0.01 —

fi2pop Generations 9.7±1.3 12.9±1.5 8.4±1.3 17.8±2.2 30.3±4.3 60.2±14.2 — —
Converged% 0.96 0.91 0.92 0.84 0.49 0.08 — —

Table 1
Convergence performance across increasing binary path-length objectives (𝑃). Each method is evaluated on
convergence robustness (proportion of runs achieving optimal reward) and sample efficiency (mean generations
to convergence with standard error). Results highlight the superior scalability of MDP-based approaches. Bold
values indicate the highest convergence proportion and the lowest statistically significant mean generations per
target path length. A visual representation can be found in the Appendix (Figure 5a).

5.1. Implications and Cross-Domain Insights

Two key patterns emerge:

1. MDP Encapsulation of Constraints is Crucial: Across all desired path lengths, methods that
offload constraint enforcement to WFC consistently outperform those that must learn it implicitly.
This discrepancy is especially pronounced given more difficult objectives (i.e. higher target path
lengths, hybrid biome/binary domains), where the feasibility space is severely constrained.

2. Feasible Region Shrinkage Limits Optimization: At high path lengths, even MDP methods
fail to converge reliably. This likely stems from the exponentially shrinking volume of the feasible
space and limited tendency toward exploration in vanilla 𝜇 + 𝜆 evolution—as compared to e.g.
Quality Diversity [25]. Despite valid intermediate states, the reward landscape remains highly
sparse and multi-modal.

These findings highlight a fundamental insight: procedural generation under complex constraints
benefits most when constraint satisfaction is externalized and search is guided through structurally
aligned representations. The clear failure of joint optimization approaches, particularly in aesthetically
constrained domains, emphasizes the importance of architectural modularity in generative design
systems.



Method Metric 10 20 30 40 50 60 70

evo 1d Generations 62.0±6.5 59.7±6.0 77.3±5.7 98.5±10.4 78.7±9.5 78.8±26.9 —
Converged% 0.42 0.45 0.59 0.46 0.28 0.05 —

evo 2d Generations 38.3±9.8 49.7±6.0 52.2±4.7 51.2±6.3 48.9±8.0 92.0±37.0 36
Converged% 0.11 0.45 0.42 0.36 0.19 0.03 0.01

baseline Generations 98.5±11.5 89.6±18.7 114.6±25.9 111.7±22.3 70.7±13.0 — —
Converged% 0.03 0.09 0.12 0.14 0.04 — —

fi2pop Generations 40.5±39.5 48 136 82.3±40.8 — — —
Converged% 0.03 0.01 0.01 0.04 — — —

Table 2
Convergence performance across increasing binary path-length objectives under the hybrid river/binary domain
(𝑃). Each method is evaluated on convergence robustness (proportion of runs achieving optimal reward) and
sample efficiency (mean generations to convergence with standard error). Almost all experiments converging on
less than 50% of runs, MDP base methods maintain a noticeable lead in both metrics. Bold values indicate the
highest convergence proportion and the lowest statistically significant mean generations per target path length.
A visual representation can be found in the Appendix (Figure 5b).

Method Metric 10 20 30 40 50 60

evo 1d Generations 66.8±13.9 80.2±11.7 155.1±24.4 344.4±37.6 551.7±104.2 472.0±214.0
Converged% 0.47 0.80 0.90 0.62 0.15 0.05

evo 2d Generations 59.5±9.1 94.9±15.0 148.1±19.9 189.6±46.2 260 160.0±159.0
Converged% 0.35 0.39 0.30 0.15 0.01 0.03

baseline Generations — — — — — —
Converged% — — — — — —

fi2pop Generations 27.0±10.5 — — — — —
Converged% 0.04 — — — — —

Table 3
Convergence performance across increasing binary path-length objectives under hybrid the field/binary domain
(𝑃). Each method is evaluated on convergence robustness (proportion of runs achieving optimal reward) and
sample efficiency (mean generations to convergencewith standard error). Results highlight the superior scalability
of MDP-based approaches, especially at higher difficulty levels. Bold values indicate the highest convergence
proportion and the lowest statistically significantmean generations per target path length. A visual representation
can be found in the Appendix (Figure 5c).

6. Discussion

6.1. Other Biomes

WFC-MDP is compatible with various domains without necessitating the bespoke engineering required
by more traditional extensions to WFC. By changing the objective function, WFC-MDP is able to
optimize for other gameplay artifacts like pond and hill biomes (Figure 4). These biomes were excluded
from the main results as they were not adapted to work in conjunction with binary either because they
proved excessively difficult to optimize or were not structured to allow long continuous paths; instead
they illustrate the flexibility of WFC-MDP. We leave the optimization of these more challenging hybrid
objectives to future work that builds on our WFC-MDP formulation.

6.2. Representation Matters

We evaluated two encoding schemes for collapse sequences: a 2D representation that maps actions to
fixed spatial locations, and a 1D representation that encodes a strict sequential order. The 2D encoding
reduces the risk of early mutations cascading across the map by localizing genetic variation, resulting
in smoother and more stable optimization dynamics. Conversely, the 1D encoding allows mutations
in earlier steps to significantly influence subsequent tile collapses, which introduces instability but



(a) Pond Biome (b) Pond and Hill Biome (c) Hill Biome

Figure 4: Outputs resulting from the optimization of other Biome objectives

encourages broader exploration. Empirically, we observe that 1D encodings tend to converge more
frequently possibly due to this exploratory behavior. In contrast, 2D encodings exhibit better sample
efficiency, aligning with their more localized impact. These trade-offs suggest promising directions for
future research, such as hybrid encoding schemes that balance exploration and stability.

6.3. Toward Scalable and Interactive Generation

Our method operates on consumer hardware, making it viable for map generation during the game
development process. However, as problems get more complex, live evolution becomes time consuming.
Further research can explore learning generalized policies that are capable of generating multiple
artifacts from single training instance. For example, one could train a Reinforcement Learning policy to
output/edit the tile-type logits in our 1D or 2D evolutionary genomes given varying target path-lengths
as in [26], with reward equal to the score of a map collapsed via WFC over these logits. Alternatively,
one could apply Imitation Learning to the data generated by the evolutionary processes in this paper,
similar to [27], and/or use such Imitation Learning to jump-start the RL process outlined above. Future
work could explore additional heuristics beyond path length optimization to test the generality of the
WFC-MDP approach. Additionally, RL extensions could leverage the gym environment to test alternative
optimization methods on the WFC-MDP formulation.

7. Limitations

7.1. Optimization Parameters

We used a fixed population size of 48 across all algorithms due to hardware constraints and to maintain
a consistent measure of sample efficiency. This choice may not reflect the optimal configuration for
each method. In particular, FI‑2Pop’s dual‑population architecture may be disproportionately affected
by smaller population sizes.

7.2. Observation Utilization

In an MDP formulation, the agent’s observation can inform optimal action selection. Agents can make
more optimal tile selections if given the partially collapsed map and the next collapse position. However,
our evolution-based implementations operate over the full action sequence in advance and do not
leverage intermediate observations. By instead evolving e.g. a neural network controller to output tile
logits at each step of the WFC-MDP, these observations could be leveraged to improve performance.

7.3. Optimization Limitations

Although MDP-based methods demonstrate improved consistency and sample efficiency on challenging
tasks, the standard 𝜇 + 𝜆 evolutionary strategy often exhibits inadequate exploration, leading to poor
convergence on the hardest problems. We hypothesize that the large PCG state space and highly



multimodal fitness landscape demand algorithms with stronger exploration capabilities, such as Quality
Diversity evolutionary algorithms [25] or Novelty Search [28].

8. Conclusion

This work recasts WaveFunctionCollapse (WFC) as a Markov Decision Process (MDP), enabling opti-
mizers to sidestep the combinatorial burden of learning tile adjacency rules by offloading constraint
enforcement to WFC’s propagation mechanism. By evaluating this formulation across various scalable
and progressively constrained domains, we uncover a central insight: explicit algorithmic decoupling of
constraint satisfaction from objective optimization dramatically improves both convergence reliability
and sample efficiency.
Our WFC-MDP framework not only succeeds where traditional methods collapse, but also reveals

how reframing generation as a sequence of valid state transitions exposes a richer interface for guidance
and learning. The domain’s scalability allowed us to observe how even strong inductive biases (like
constraint propagation) falter without sufficient exploration capacity, suggesting fertile ground for
hybrid learning approaches.
Looking ahead, our formulation opens the door to more controllable and expressive uses of WFC.

Because objective functions are more generalizable than hard-coded global constraints, they provide a
natural bridge to machine learning methods, particularly those that rely on flexible reward signals or
policy learning. By enabling WFC to support objective driven control over layout generation, this work
establishes a blueprint for scalable, constraint-aware, and ML-compatible PCG systems.

9. Appendix

9.1. Final Hyperparameter Settings

Table 4 records our tuned hyperparameters.

Optimization method

Domain Parameter Baseline FI–2Pop Action Seq (1D) Action Seq (2D)

Binary

number_of_actions_mutated_mean 89 162 97 44
number_of_actions_mutated_standard_deviation 157.2498 196.1993 120.0876 28.2708
action_noise_standard_deviation 0.0810 0.0418 0.1296 0.1409
survival_rate 0.5211 0.3552 0.4151 0.2328
cross_over_method 1 (ONE_POINT) 1 (ONE_POINT) 1 (ONE_POINT) 0 (UNIFORM)
cross_or_mutate 0.8324 0.9871 0.7453 0.9557

Hybrid River/Binary

number_of_actions_mutated_mean 1 142 79 48
number_of_actions_mutated_standard_deviation 56.7544 69.3442 111.7231 14.0969
action_noise_standard_deviation 0.1452 0.0413 0.1087 0.0647
survival_rate 0.7988 0.4726 0.4133 0.3077
cross_over_method 1 (ONE_POINT) 1 (ONE_POINT) 1 (ONE_POINT) 0 (UNIFORM)
cross_or_mutate 0.9633 0.9130 0.9930 0.8902

Hybrid Field/Binary

number_of_actions_mutated_mean 86 178 23 132
number_of_actions_mutated_standard_deviation 146.9724 68.7875 0.5458 56.0667
action_noise_standard_deviation 0.3916 0.0125 0.4937 0.0407
survival_rate 0.7513 0.7720 0.1861 0.3245
cross_over_method 0 (UNIFORM) 0 (UNIFORM) 1 (ONE_POINT) 1 (ONE_POINT)
cross_or_mutate 0.6876 0.7570 0.8241 0.8415

Table 4
We employed Optuna [29] to automatically tune evolutionary hyperparameters for each of our three methods
and across all experiments. For each method/experiment we ran 20 trials, optimizing the cumulative best reward
after 20 training attempts with 100 generations each.



9.1.1. Hyperparameter Definitions

number_of_actions_mutated_mean (int) Expected number of genome actions to mutate each genera-
tion.

number_of_actions_mutated_standard_deviation (float) Standard deviation for truncated‐normal
sampling of the mutation count.

action_noise_standard_deviation (float) Standard deviation of Gaussian noise added to each mu-
tated action’s value.

survival_rate (float) Fraction of the population preserved into the next generation.

cross_over_method (enum) Crossover strategy:

0 = UNIFORM Gene‐wise mixing: each child gene is chosen from one parent with 50% proba-
bility.

1 = ONE_POINT Single cut‐point crossover: parents swap tails at one random index.

cross_or_mutate_proportion (float) Fraction of offspring produced via crossover.

9.2. Convergence Behavior Plots

Plots correlated with the tables in Section 5 (Figure 5).

(a) Plot of Table 1 (b) Plot of Table 2 (c) Plot of Table 3

Figure 5: Plot which serve as a visual representation of the convergence behavior expressed in a corresponding
tables. The lines correlate with the fraction of converged training samples (left y axis — higher is better) and the
bars correlate to the mean generations to successfully converge (right y axis — lower is better).

10. Declaration on Generative AI

There was no use of generative AI in this paper.
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