CEUR-WS.org/Vol-4090/paperld.pdf

CEUR
E Workshop
Proceedings

published 2025-11-12

Amorphous Interpretations: Diverse Narrative Generation
for Open-Ended Simulation Environments*

Dipika Rajesh’, Julian Togelius? and M Charity’

"University of California Santa Cruz, Santa Cruz, CA, USA
?New York University, Brooklyn, NY, USA
3University of Richmond, Richmond, VA, USA

Abstract

We introduce Amorphous Interpretations — an evolutionary narrative generation system capable of interpreting
events in an open-ended simulation to create thematically diverse and cohesive stories. We use the event log
files from four human-designed environments from the abstract Amorphous Fortress engine as our domains to
generate artificially “interpreted” stories. The raw event logs are sifted to extract significant narrative events that
are then reduced to a grammar to systematically modify thematic elements of the story. By applying two different
Quality-Diversity algorithms, and by restricting the modification and randomization of certain story elements,
we discover that this system is capable of generating a wide range of stories from just a single event log.

Keywords

artificial life, narrative generation, simulations, open environments, quality diversity algorithms

1. Introduction

Often with simulation environments, we as humans invent “stories” for the agents and characters
within them. Under the hood, the bits and pixels of the characters and their actions only have meaning
with respect to the set of rules and mechanics defined by the environment.

As we interact with these simulations, each person has the ability to interpret their own version
of the same story that is both unique and contextually relevant to the events that transpire in the
simulation. Each person, in turn, provides their own perspective or viewpoints that make for interesting
or novel re-tellings. Is it therefore possible to explore and evaluate the expressive range and quality of
the themes created from artificially generated stories in open-ended environments?

This paper introduces Amorphous Interpretations — an evolutionary generative system capable of
creating unique stories from a simulation environment’s event log. We use the Amorphous Fortress
environment, modeled after video game mechanics and non-playable character interactions, to generate
interpretations of human-designed but Al-controlled environments. We find that the system is capable
of creating thematically diverse and coherent narratives, automatically assigning new and diverse
thematic meanings to fortresses that don’t necessarily contain human-designed themes. This system
is also capable of creating new stories from environments that already contain an established theme,
thereby creating an “alternate universe” of the same world. With this system, our goal is to artificially
generate new and interesting stories from a simulation environment in order to attain a human level of
fluidity and creativity for a story retelling or interpretation.

Joint AIIDE Workshop on Experimental Artificial Intelligence in Games and Intelligent Narrative Technologies, November 10-11,
2025, Edmonton, Canada.
Q dirajesh@ucsc.edu (D. Rajesh); togelius@gmail.com (J. Togelius); mcharit2@richmond.edu (M. Charity)

an

&} https://julian.togelius.com/ (J. Togelius); https://mastermilkx.github.io/ (M. Charity)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
32

mailto:dirajesh@ucsc.edu
mailto:togelius@gmail.com
mailto:mcharit2@richmond.edu
https://julian.togelius.com/
https://mastermilkx.github.io/
https://creativecommons.org/licenses/by/4.0/deed.en

2. Background

2.1. Simulations and Emergent Al Behavior

Simulation environments allow for the observation of interactions between artificial agents that simulate
real-world scenarios and events. In games and Al research, simulations and Artificial Life [1] have
been extensively studied to discover connections and patterns in Al behaviors. Charity et al’s SimSim
environment [2] evolves furniture arrangements in houses based on the Sims games to find novel
designs while keeping the player alive and satisfied. Suarez et. al’s NeuralMMO [3] environment
evolved reinforcement learning (RL) agents to survive in an environment modeled after massively
multiplayer online role-playing games (MMORPGs.) OpenAl’s game environment [4] trained agents to
adversarial compete in a game of hide and seek. Park et. al’s Smallville environment [5] allowed for
the simulation of human behavior and multi-agent interaction and communication in a small virtual
community.

All of the systems also led to unexpected and novel behaviors from the agent interactions that were
not originally defined for the system and emerged over time: SimSim generating houses consistently
replacing the beds with coffee machines; developed agents in NeuralMMO learning to seek out and
“hunt” weaker agents; agents in the hide and seek environment learning to glitch the environment to
successfully beat the adversarial team; and agents forming relationships, making plans, and gossiping
with each other over time in the Smallville environment. However, these discoveries were annotated by
the authors and developers of the environments. There is a lack of academic work of the system itself
automatically provide reasoning or form a narrative about these behaviors.

2.2. Story Sifting

Non-deterministic simulations, by their very nature, create a large number of event logs that must be
used to generate narratives. Story Sifting [6] explores sifting as a process of combing through a large
number of logs to extract “interesting” ones - carefully selecting a meaningful subset of the logs that
carry narrative significance. We are interested in Story Sifting approaches as we need to systematically
comb through large logs of abstract representations that cannot be extrapolated into narratives directly.
Kremenski et al. [7] explore a domain-specific system that automatically synthesizes sifting patterns
based on user-provided events.

However, these approaches benefit from interpretable and explainable simulation mechanics with
clear narrative significance. For example, Centrifuge [8] proposes a visual Story Sifting system that
matches queries against a simulated world to identify interesting characters and events, such as finding
characters explicitly tagged as “villains.” This is possible because the simulation provides interpretable
character representations, in contrast to the more abstract representations used in Amorphous Fortress.
With Amorphous Interpretations, we automate the Story Sifting process by using the inherent game
mechanics defined by the Amorphous Fortress engine, without the presence of explicit labels.

2.3. Narrative Generation

There has also been extensive research on generating narratives using a number of different method-
ologies. Talespin [9] is a seminal project in this space where the characters in the simulation pursue
goals using plans that are built by the narrative generation. A significant area of research in Narrative
Generation explores Narrative Planning [10], which uses causal links and domain knowledge to explore
character motivations. When it comes to abstract simulation environments, some Narrative Generation
systems are formed from human annotations. Hjaltason et al’s experiment [11] asked participants to
annotate the interactions between agents and form a narrative based on a custom made action game
environment. This system was inspired by Heider and Simmel’s experiment [12] which asked partici-
pants to form a narrative after watching a stop-motion animation video that used simple shapes. This
produced narratives with human-like attributes and behaviors applied to the shapes. Other works have
formed narratives using evolutionary methods. McIntyre and Lapata’s system [13] which generated

stories and plots by evolving grammars and replacing entities from a corpus of children’s stories. Garcia
et al’s [14] system evolved grammars and finite-state machines defining character backstories and
behaviors to interact with each other in a simulation environment to see if a particular story structure
could be found from the event logs. Similarly, Caves of Qud [15] uses a character history generator
that uses replacement grammar and state machines in order to generate historical events in the game
and then interpret them. Our work seeks to automatically evolve and discover a diversity of stories,
plots, and themes from a log simulated agent interactions in an environment that carry no inherent
human-interpretable meaning.

3. Methods

3.1. Amorphous Fortress Environment

For this experiment, we use the Amorphous Fortress (AF) simulation environment [16] as the testbed
for this story generation system. Entity classes in the Amorphous Fortress environment are defined
using finite state machines — where nodes define the action space of an entity from the class and
edges define transition conditions. The possible entity action nodes are defined in Table 1. Running
a fortress, or contained simulation environment containing these agents, in the Amorphous Fortress
engine produces an event log of interactions between entities in the system. These events are produced
based on the action node definitions an agent performs at a given timestep. We use the event logs
produced by the fortresses to form the core foundation of the narrative generation system.

Action Node Definition

idle the entity remains stationary

move the entity moves in a random direction (north, south, east, or west)

die the entity is deleted from the fortress

clone the entity creates another instance of its own class

push (c) the entity will attempt to move in a random direction and will push an entity of the
specified target character into the next space over (if possible)

take (c) the entity removes the nearest entity of the specified target character

chase (c) the entity will move towards the position of the nearest entity of the specified target
character

add (c) the entity creates another instance from the class of the specified target character

transform (c) the entity will change to a different entity class - thus altering its FSM definition
entirely

move_wall (c) the entity will attempt to move in a random direction unless there is an entity of the

specified class at that position - otherwise it will remain idle

Table 1
Entity FSM action node definitions. These actions were modeled after actions commonly performed by characters
in video games.

3.2. Log Sifting

In order to create a narrative that is easy to follow, we intended to capture a relatively short subset of
the logs. For these experiments, we limited the number of logs to 30. However, it takes several time
steps for the entities in the fortresses to take a wide variety of actions that capture a narrative. Since
each action at a particular time step generates a log, the raw event logs generated by the fortresses are
often very long. Instead of randomly selecting 30 logs, we designed a Log Sifting system that extracts
narratives in a meaningful way.

The system iterates through the raw event logs generated by the fortresses and systematically selects
logs based on patterns, rare events, and random chance, prioritized in that order. The patterns are
hand-authored based on the mechanics offered by the AF simulation system. Three main patterns were

identified after analyzing the logs and the system mechanics: Predator-Prey, Gatherer, and Treasure
Hunter. The Predator-Prey pattern identifies situations where one entity chases another entity and
sometimes takes them. The Gatherer pattern identifies situations where one entity takes multiple other
entities. Finally, the Treasure Hunter pattern identifies situations where one entity moves around
considerably and takes only one other entity.

The Log Sifting system chooses the method of selecting logs probabilistically. The pattern extraction
system has the highest probability of 0.5 to give preference to the patterns that are afforded by the
system’s mechanics. The rare events are identified by creating a weighted probability distribution over
the actions in the raw AF log, where less frequent actions are assigned higher weights. For example,
the move action happens most frequently in the logs and is therefore assigned the least weight. The
Log Sifting system is least likely to pick the log with the move action if it is sifting based on rare events.
The probability of rare events being extracted by the system is 0.3. Finally, the Log Sifting system has
a 0.2 chance of selecting the logs entirely randomly, one at a time. This process is repeated until the
desired number of logs is reached and the final sifted logs are ordered by time step at which they occur
during the simulation.

3.3. Grammar Extraction and Word Replacement

<> [robof]

QD Stor}’ Irans{cm:]d inta
: [tru
<0 [%.b29d] Generation <> [bike] blocked by
transformed into [y.c2ae] Process - [hE]I;rE;la fruci

<1>[.d474] cloned to [

Badb] at (44, 2)
<2> [$.b14a] moved to a
(65, 47) Base Story

<3> [*.7b93] moved to
165, 68) Log Sifting <0= [cheese] put into
<5> [.d474] transformed _ [pizza]
into [|.c91d] Process <0=X Wansforned =5 lnwy’T;:ﬁrr;m:|Ckw
<6> [}.460f] blocked by P :’w G 0> [chef] made
[5.6b28) <0> D pushed ¥ [pizza]
<7> [5.d487] added . .
[1.fdaf] at (55, 7) @
<f> [$.b14a] moved to
(50, 78)
<8 [|.c81d] pushed .
[Y.3a62] B
=10= [y.cOae] chased <65 [story] blocked
[0.6829) by [plathols]
=g= [human] rejected
Trage]

Figure 1: A diagram of the conversion from the original Amorphous Fortress logs, to the sifted form, then finally
to 3 generated stories.

The sifted event logs from the fortress simulations are reduced to a grammar format for simple
replacement of entities and their actions. Entities, represented in the log as their entity class ASCII
symbol followed by an entity ID number, are replaced as generic nouns. Their actions, defined from their
FSM action node, are replaced as generic verbs. Using this grammar of the event logs, the system replaces
the nouns and verbs with relationship definitions taken from the ConceptNet semantic network!. For this
experiment, we reduced the entire ConceptNet database to only use NOUN-VERB-NOUN relationships
to match the grammar structure of the logged events. We use a grammar format to maintain the already
abstract nature of the Amorphous Fortress environment. The pool of nouns and verbs were extracted
using the ‘UsedFor, ‘CapableOf", and ‘ReceivesAction’ graph connections along with the spaCy library
for identifying nouns, compound nouns, proper nouns, and verbs. All verbs were also changed to
past-tense form using spaCy to create a consistent and grammatically correct story-telling narrative

'https://conceptnet.io/
*https://spacy.io/

from the generation process. Figure 1 illustrates the process of converting the original Amorphous
Fortress log file, into the base grammar form, sifted, and then into 3 different randomly made stories
using the NOUN-VERB-NOUN relationships in the modified ConceptNet database.

3.4. Story Generation

This experiment uses the evolutionary algorithm to generate unique and “interesting” stories from the
grammar-reduced log files. Figure 2 shows the entire genreation process in the experiment.

I 1
................................... 1
] : : <> llihleesel put Inter-sentence: 0.5 I
: [<6> [:alleprl:':liolnhd Entity OUhEIS‘Df_l 0.6 fitness = 0.5 :
1 Evaluate .. : : B e Verb cohesion: 0.4 !
: stories | T Yy Y rrreeeeal [E=] !
[
1 B
1 : : @ # vs. ﬁ } novelty =1.2 :
: . !
LI} . .
: ' Evaluation Algorithm :
[
1 | TT TS TS S s s s s s s s s s s s s m ===
! 1
! 1
! 1
i ' Save to archive
1 Create new .
: et f Select best I chelt.y‘ Save by novelty
i population ¢ stories H MAP-Elites: Save by fitness
: stories 1
1
! 1
! 1 e e e e e e e e e o e e e e e
1 1 1 . . !
: o Mutation Algorithm 1
1 1]
! ' 1
! [1
! o [e 3 % Tl |
: 1 : <G> [wailer] blocked m 0%, <6 [wailer] served]
- kitchen| by [kiteher
I MUtate """""" : - tﬁsylclhef] zu‘rn <‘3>i\¢‘fmr\ mTqr :
1 1 1 [pzza] Ipizza) f
| . bleeked . H
- LA - A |
. [served 1
1 I 1
R Tl i el Tl 1 Randomly change I
1 entities and verbs 1
Evolutionary Story Generation Pipeline el !

Figure 2: A diagram of the evolutionary pipeline and story generation for the Amorphous Interpretations system.

First a main character is chosen for the story. This main character is defined based on the entity with
the most interactions in the log original file. All other entities in the fortress are themed around this
main character by choosing associated nouns defined from the custom ConceptNet dataset. For example
if the main character is chosen to be a cat, the other entities may be defined as dog, mouse, human, milk,
bird, or house. If there are multiple entities from the same class definition (i.e. share the same symbol in
the log), the other entities are defined with the same noun but with numbers after the name (e.g. mouse,
mouse2, mouse3, etc.) For each entity (including the main character entity) their grammar verbs are
replaced with verbs associated with the entity. Using the previous example, the dog entity may have
the possible (past-tense) verbs of ran, barked, ate, buried, chased, or bit for its interactions.

3.5. Evolutionary Search

As defined for most evolutionary algorithms, the evolved artifact for this system is the story generated
from the base grammars extracted from an Amorphous Fortress log.

3.5.1. Genome Representation

The genome representation for the stories is the vectorized representation of the list of noun-entities
and order of the verbs used as associated with the event logs in the story. We use “all-MiniLM-L6-v2“
model from the HuggingFace sentence transformer library® to encode this list. This is to encourage
thematic diversity when generating the stories from the same bsae log file.

*https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

3.5.2. Mutation

The mutation function for each artifact story selects each noun-entity and with some random chance
changes the representation. If the noun-entity is selected to be changed, all associated verbs are changed
as well. If the entity has multiple instances (e.g. mouse2, mouse3,) those instances are changed as well
to maintain consistency. The new noun-entity is chosen at random from a list of available unused nouns
associated to the main character. If there are no other nouns left, a noun is chosen at random from the
ConceptNet dataset. Verbs are also assigned at random based on the subject noun’s association list.

3.5.3. Fitness Evaluation

Evaluation for an artifact story is done in three parts. The first part evaluates inter-sentence cohesion and
averages the semantic closeness and relevance between consecutive story log entries with the assigned
nouns and verbs (e.g. [cat] hunted [mouse] | [mouse] ate [cheese].) This metric is evaluated using cosine
similarity scores between the log entries vector embedding from the sentence transformer. The second
part of the fitness evaluates the semantic relatedness between the nouns of the story. Ideally, all of
the nouns are chosen based on the relevancy to the chosen main character, however, if there are more
entities than there are related nouns, additional nouns to replace the entities are chosen at random from
the ConceptNet dataset. This incentivizes the evolutionary algorithm to select main characters from the
dataset with many associations. The last part evaluates the semantic similarity between the replacement
story verb and the verb used in the original Amorphous Fortress fortress log entry. This is to incentivize
consistency with the game action and the generated verb. For example, generating [cat] hunted [mouse]
would most likely have a higher similarity score to the original AF log entry [c.21b3] chased [@.231f]
than an alternative generation of [cat] licked [mouse]. The final fitness score for the artifact takes a
weighted average of the three individual score parts equally to achieve a float value between 0-1 with 1
being the highest fitness value possible. The heighest weight is given to inter-sentence cohesion in order
to promote thematic cohesion within the generated narrative, followed by entity-similarity and finally,
verb similarity.

4. Experiments

We conduct three different experiment setups for this system and evaluate the generated stories and
two different quality diversity algorithms for a total of 6 experiments.

4.1. Quality Diversity Algorithms

We test the system using the Novelty Search with Local Competition (NS-LC) algorithm [17] and the
MAP-Elites algorithm [18] to generate new and diverse stories from the evolutionary system. Novelty
is determined by the cosine similarity between story genome vectors (refer to the subsection on
Genome Representation.) Artifacts with a minimum fitness value of 0.3 and a minimum novelty
score of 1 are stored in the archive. The MAP-Elites algorithm sorts the generated artifacts based on
the individual fitness components: intra-sentence cohesion, inter-sentence cohesion, main character
semantic similarity, and verb semantic similarity (refer to the subsection on Fitness Evaluation.) The
top 5 artifacts with the highest fitness in each of these categories is maintained in the map archive.
For both algorithms, new samples for the 90% of the next population generation are taken from these
archives. The other 10% is made up of randomly generated artifacts to avoid having a local maxima
from being reached during evolution.

4.2. Experiment Setup

The three experiments conducted (all using the 2 quality diversity experiments) explore the different
kinds of stories that can be generated using different control variables and parameters. Each experiment
is run for a 100 generations with a population size of 100 individuals.

The first experiment, titled Purely Random, does not choose associated nouns or verbs for the
generated stories. The main character, the other noun-entities, and the verbs for log entry are all chosen
completely at random using the custom ConceptNet database. This experiment is intended to act as a
baseline comparison for the other 2 experiments. It is also intended to show the thematic range and
chaotic lack of cohesion of the possible story outputs.

The second experiment, titled Story Tropes, randomly selects a main character but uses associated
noun selections for the other entities (e.g. cat is the main character, then dog, mouse, human could be
associated nouns.) The verbs are also associated to the subject nouns for each entry log. This is based
off of the original description of the system as outlined by the previous sections. With this experiment,
the intention is to show a wide range of stories that are thematically cohesive.

The third experiment, titled Alternate Universe, uses a consistent main character for each story
artifact. The other noun-entities are still associated but the ordering and potential extra nouns are
assigned at random. The verb selection also remains random but associated. This is to evaluate
how cohesive or interesting a story could become if the same character is used for generation. This
experiment makes the generated stories feel like a narration or retelling of the events in the fortress. We
run this experiment with two different pre-selected main characters for each story with both algorithms.

With two algorithms, four stories and three experiments (the third having two sub experiments), we
ran a total of 32 experiments.

4.3. Fortress Environments

We use one log each from four different fortresses as the base log files for these experiments. These
fortresses were each manually designed in the Amorphous Fortress Online system [19] and given
themes but were chosen to provide a more direct thematic comparison between designer intent and the
generated stories.

The first fortress, Drunk Sokoban, features agents that randomly move around the map and can
“push” crate objects onto goal positions. These crates will be destroyed and the goal will transform if
successfully placed on top. The second environment, Lock n’ Key contains a character that needs to
collect an object in order to pass through immovable walls and reach the exit area. The third environment
Castle features 2 “guard knights“ characters, 3 “thief” characters, and a “king” and a “queen” who stand
in front of a sectioned room full of “gold®. The thieves will randomly move and assassinate the king
and/or queen if next to them and collect the gold. However, the knights will hunt and kill the thieves if
they are within range. The last fortress, Zelda, is modeled after characters from The Legend of Zelda
series. A character “Link” will pick up “rupees” dropped by a “korok” character. Another character the
“Bokoblin® will chase and kill Link if he is within range. A third character “Goron® will push and move
“boulders” around the map that can’t be passed by any character. Starting images for these 4 fortresses
are shown in Figure 3.

#EHREHRBHFH AR RR
#X. @ ... X#

HABRBEBRERRBHRUY

HERBERBERRERREY HERRBRRRRnER
#355555555554s5# e «sB..
G 4

S P "
BRARERRRARRERAR

#
#
#..
#..
#
#
#

#

#
P
#

#

#

#

REsRERRER R

Drunk Sokoban Lock n' Key Castle Zelda

Figure 3: Starting renders of the fortresses used in the experiment.

Again, these thematic meanings and assignments to the agents and entities in these selected fortresses
were originally given by the designers. The purpose of this current system is to automatically generate

new thematic meaning to fortresses or assign meanings to fortresses in the AF system that do not
contain these human-designed themes or narratives.

5. Results and Discussion

The MAP-Elites algorithm was able to generate stories with consistently high fitness, while the Novelty
Search algorithm produced a wide variety of “novel” stories, as reflected in archive size. By examining
the fitness graphs, archive sizes, and best-fitness stories for each experiment, alongside exploratory
analysis, we were able to make several qualitative observations.

Experiment 1: Purely Random As expected, the Pure Random experiment generated the most
diverse stories, many of which lacked thematic cohesion. Serving as a baseline, this experiment
intentionally avoided using semantic word associations to replace words in the grammar. As a result,
it produced a wide variety of characters and situations, not all of them coherent. Nevertheless, some
stories displayed unexpected coherence, with related entities emerging even though the fortress does not
explicitly encode such connections. For instance, one run produced a narrative centered on “cranberries
and marmalade” (Table 2), which, while structurally simple, demonstrates how unguided randomness
can surface surprising thematic links.

Experiment 2: Story Tropes By introducing semantic associations between entities, the Story
Tropes experiment improved the narrative coherence of the generated stories, which in turn led to higher
fitness scores (Table 2). However, this came at the cost of novelty: the size of the archive decreased, as
the system produced fewer unexpected combinations once associations were imposed. Interestingly,
two different fortresses converged on a story with “pilots” as the main character, suggesting that the
algorithm may be exploiting structural affordances in the system’s design (see Tables 5 and 6, Appendix).

Experiment 3: Alternate Universe Fixing the main character improved the thematic focus of the
generated stories, although the quantitative results were mixed (Table 3). However, if the goal is to
generate stories centered on a specific theme or idea, the results of this experiment suggest that the
Amorphous Interpretations system is capable of producing cohesive narratives around a central theme.
For example, the “explorer” story generated in the Lock n’ Key domain demonstrates a focused narrative
and strong thematic cohesion (Table 7, Appendix) - the story suggests an expanding land that turns
into a continent and an explorer who attempts to conquer and journey through it. This is only one
interpretation of this story, as the grammar-based system offers room for a variety of interpretations.

Domain Complexity While the system remains largely independent of the context of the domain,
the number of entities and the variety of entity groups affects the fitness and diversity of generated
stories. We observed that domains with fewer number of entities (Lock n’ Key) were most conducive
to this system by producing consistently high fitness scores and large archive sizes (as observed in
Tables 2 and 3). This indicated that having a smaller search space improves thematic cohesiveness and
diversity in interpretations.

Quantitative vs. Qualitative Evaluation We observed that stories with lower fitness scores could
still be cohesive and compelling. For instance, the story generated by the Story Tropes experiment in
the Zelda domain (see Table 6, Appendix) produced a meaningful narrative involving airplanes, pilots,
and jets, whereas the Pure Random experiment yielded stories such as the “cranberries and skaters”
narrative (see Table 5, Appendix), which achieved higher fitness but was far less engaging. This contrast
highlights the need for qualitative, human-centered evaluation, or a mixed-methods approach to better
assess narrative quality.

Generated Story Themes Outside of the best selected stories, the archives generated from these
quality diversity experiments contained a variety of weird, interesting, cohesive stories from just a
single log file. The Castle fortress, for example, was originally themed around thieves vs. a guard of
royal knights trying to steal gold, the system made interpretive stories such as prisoners vs. jailers,
hockey players vs. ice skating, hunters vs. animals, and raindrops vs. water. While these stories were
different thematically, they still followed the narrative story structure sifted from the log file of the
fortress.

Experiment 1: Random Experiment 2: Story Tropes
Drunk Sokoban | Lock n’ Key | Castle | Zelda | Drunk Sokoban | Lock n’ Key | Castle | Zelda
Novelty Search | 9 120 6 15 8 35 2 4
MAP-Elites 0.57 0.64 0.58 0.53 0.62 0.75 0.66 0.55
Table 2

Results from Experiments #1 and #2. First row shows the maximum archive size for the novelty search experiments.
Second row shows the highest fitness for the MAP-Elites experiments.

Experiment 3: Alternate Universe (person) Experiment 3: Alternate Universe (fortress-specific)
, Drunk Sokoban | Lock n’ Key | Castle | Zelda
Drunk Sokoban | Lock n’ Key | Castle | Zelda [worker] [explorer] [quard] | [fighter]
Novelty Search | 3 4 2 2 2 8 5 5
MAP-Elites 0.5 0.73 0.55 0.5 0.55 0.6 0.59 0.56
Table 3

Results from Experiments #3. First row shows the maximum archive size for the novelty search experiments.
Second row shows the highest fitness for the MAP-Elites experiments.

6. Future Work

We would like to further develop the generative system to include co-creative story telling and narrative
creation from open-ended environments. In this co-creative system, users would be able to directly
annotate events or characters in the story while the generative Amorphous Interpretations system would
build a narrative around it. This can allow for more exploration into thematic narrative construction or
variance in story creation while maintaining cohesion given the user’s feedback and direction.

Likewise, a formal user study could be performed to evaluate the quality and selection of the generative
system as compared to human evaluation of a story. Feedback from the user study could be used to
design a supervised model that could distinguish between “interesting” and “boring” stories. This would
allow us to improve the system’s current evaluation metric so that it more closely aligns with human
preferences and taste.

We would also like to examine how large language models (LLMs) such as ChatGPT and Gemini can
be used to augment the grammar-based generated stories into prose-like or fairy-tale styled stories.
The LLMs would be able to translate from the simulation’s log format, to the thematic interpretation,
and finally into a more human-readable and fluid story.

7. Conclusion

With Amorphous Interpretations, we introduce an interpretable narrative system for open-ended
simulations. We use two Quality-Diversity algorithms to explore the thematic diversity and cohesion
of the narratives generated. We found that the novelty search algorithm generated a large archive of
thematically diverse stories for each fortress log while the MAP-Elites algorithm generated stories
with more narrative cohesion. We look forward to exploring human evaluation of these artificially
interpreted stories and extending the system to include a co-creative narrative design pipeline to allow
for even more diverse and fluid interpretations.

Acknowledgments

The graphic icon images used in the diagram are designed by Freepik* and taken from the Flatlcon.com
website.

*https://www.flaticon.com/authors/freepik

Declaration on Generative Al

The author(s) have not employed any Generative Al tools in the writing of this paper.

References

[1]
(2]

C. G. Langton, Artificial life: An overview (1997).

M. Charity, D. Rajesh, R. Ombok, L. B. Soros, Say “sul sul!” to simsim, a sims-inspired platform for
sandbox game ai, in: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 16, 2020, pp. 182-188.

[3] J. Suarez, Y. Du, P. Isola, I. Mordatch, Neural mmo: A massively multiagent game environment for

(4]

training and evaluating intelligent agents, arXiv preprint arXiv:1903.00784 (2019).
B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, 1. Mordatch, Emergent tool use
from multi-agent autocurricula, in: International conference on learning representations, 2019.

(5] J.S.Park, J. O’Brien, C.J. Cai, M. R. Morris, P. Liang, M. S. Bernstein, Generative agents: Interactive

simulacra of human behavior, in: Proceedings of the 36th annual acm symposium on user interface
software and technology, 2023, pp. 1-22.

[6] J. Ryan, Curating simulated storyworlds, University of California, Santa Cruz, 2018.

(7]
(8]

M. Kreminski, N. Wardrip-Fruin, M. Mateas, Toward example-driven program synthesis of story
sifting patterns., in: AIIDE Workshops, 2020.

S. Johnson-Bey, M. Mateas, Centrifuge: A visual tool for authoring sifting patterns for character-
based simulationist storyworlds., in: AIIDE Workshops, 2021.

[9] J. R. Meehan, Tale-spin, an interactive program that writes stories., in: Ijcai, volume 77, 1977, pp.

[10]

[11]

91-98.

M. O. Riedl, R. M. Young, Narrative planning: Balancing plot and character, Journal of Artificial
Intelligence Research 39 (2010) 217-268.

K. Hjaltason, S. Christophersen, J. Togelius, M. J. Nelson, Game mechanics telling stories? an
experiment., in: FDG, 2015.

F. Heider, M. Simmel, An experimental study of apparent behavior, The American journal of
psychology 57 (1944) 243-259.

N. McIntyre, M. Lapata, Plot induction and evolutionary search for story generation, in: Proceed-
ings of the 48th Annual Meeting of the Association for Computational Linguistics, Association for
Computational Linguistics, 2010, pp. 1562-1572.

R. Garcia, P. Garcia Sanchez, A. Mora, J. Merelo, My life as a sim: evolving unique and engaging
life stories using virtual worlds, in: Artificial Life Conference Proceedings, MIT Press One Rogers
Street, Cambridge, MA 02142-1209, USA journals-info ..., 2014, pp. 580-587.

[15] J. Grinblat, C. B. Bucklew, Subverting historical cause & effect: generation of mythic biographies

[16]

in caves of qud, in: Proceedings of the 12th International Conference on the Foundations of Digital
Games, 2017, pp. 1-7.

M. Charity, S. Earle, D. Rajesh, M. Wilson, J. Togelius, Amorphous fortress: Exploring emergent
behavior and complexity in multi-agent 0-player games, in: 2024 IEEE Congress on Evolutionary
Computation (CEC), IEEE, 2024, pp. 01-10.

[17] J. Lehman, K. O. Stanley, Evolving a diversity of virtual creatures through novelty search and

local competition, in: Proceedings of the 13th annual conference on Genetic and evolutionary
computation, 2011, pp. 211-218.

[18] J.-B. Mouret, J. Clune, Illuminating search spaces by mapping elites, arXiv preprint

[19]

arXiv:1504.04909 (2015).
M. Charity, M. Wilson, S. Lee, D. Rajesh, S. Earle,]J. Togelius, Amorphous fortress online:
Collaboratively designing open-ended multi-agent ai and game environments, arXiv preprint
arXiv:2502.05632 (2025).

Original AF Story

Sifted Story

Best Generated Story

<1>[@.46ae] moved to 7,2
<1>[@.1a7f] moved to 7,2
<1>[@.aece] moved to 1,5
<1>[@.bf99] moved to 11,5
<2>[@.46ae] moved to 6,2
<2>[@.1a7f] moved to 6,2
<2>[@.bf99] moved to 11,6
<3>[@.46ae] moved to 7,2
<3>[@.1a7f] moved to 5,2
<3>[@.aece] moved to 2,5
<3>[@.bf99] moved to 10,6
<4>[@.46ae] moved to 8,2
<4>[@.1a7f] moved to 5,3
<4>[@.aece] moved to 3,5
<5>[@.46ae] moved to 9,2
<5>[@.1a7f] moved to 6,3
<5>[@.aece] moved to 3,6
<5>[@.bf99] moved to 11,6
<6>[@.46ae] moved to 8,2
<6>[@.1a7f] moved to 5,3
<6>[@.aece] moved to 4,6
<6>[@.bf99] moved to 10,6
<7>[@.46ae] moved to 9,2
<7>[@.1a7f] moved to 6,3
<7>[@.bf99] pushed [*.foc2]
<8>[@.46ae] pushed [*.66a4]
<8>[@.1a7f] moved to 6,4
<8>[@.bf99] pushed [*.f6c2]
<9>[@.46ae] pushed [*.66a4]

Table 4

<8>[@.46ae] pushed [*.66a4]
<54>[@.bf99] pushed [*.efb1]
<82>[@.aece] pushed [*.f6c2]
<93>[@.bf99] moved to 11,1
<186>[@.bf99] moved to 6,2
<250>[@.aece] moved to 5,3
<343>[@.bf99] moved to 4,5

<458>[@.bf99] pushed [*.7dbb]

<459>[@.bf99] pushed [*.7dbb]

<462>[@.bf99] pushed [*.7dbb]

<505>[@.1a7f] moved to 4,3

<558>[@.aece] pushed [*.7dbb]

<559>[*.7dbb] took [X.a0f1]

<560>[*.7dbb] transformed into [0.48e7] at 1,6
<648>[*.66a4] took [X.7597]

<649>[".66a4] transformed into [O.c1ca] at 13,1
<703>[@.bf99] moved to 11,1

<720>[@.aece] pushed [*.efb1]

<759>[".efb1] took [X.e61b]

<760>[*.efb1] transformed into [O.c7ff] at 1,1
<812>[@.1a7f] moved to 3,4

<874>[@.1a7f] pushed [*.f6c2]

<962>[@.1a7f] moved to 12,2

<1004>[@.1a7f] moved to 11,1

<1073>[@.aece] moved to 13,2

<1116>[@.46ae] moved to 9,1

<1196>[@.bf99] moved to 5,5

<1201>[@.bf99] moved to 5,4

<1202>[*.f6c2] took [X.700b]

<1203>[".f6c2] transformed into [0.ba86] at 13,6

—_ e, ——

<8>[cranberries2] completed [skater]
<54>[cranberries] learned [skater2]
<82>[cranberries3] backed [skater3]
<93>[cranberries] deliberated to 11,1
<186>[cranberries] categorized to 6,2
<250>[cranberries3] nested to 5,3
<343>[cranberries] ingested to 4,5
<458>[cranberries] spread [skater4]
<459>[cranberries] hollowed [skater4]
<462>[cranberries] flowered [skater4]
<505>[cranberries4] skilled to 4,3
<558>[cranberries3] depth [skater4]
<559>[skater4] beheaded [marmalade]
<560>[skater4] wondered into [gem] at 1,6
<648>[skater] explored [marmalade2]
<649>[skater] diverted into [gem2] at 13,1
<703>[cranberries] journeyed to 11,1
<720>[cranberries3] donated [skater2]
<759>[skater2] tallied [marmalade3]
<760>[skater2] streaked into [gem3] at 1,1
<812>[cranberries4] circled to 3,4
<874>[cranberries4] pressed [skater3]
<962>[cranberries4] helped to 12,2
<1004>[cranberries4] introduced to 11,1
<1073>[cranberries3] inflicted to 13,2
<1116>[cranberries2] clouded to 9,1
<1196>[cranberries] reinforced to 5,5
<1201>[cranberries] threw to 5,4
<1202>[skater3] assimilated [marmalade4]
<1203>[skater3] kidnapped into [gem4] at 13,6

Story log comparisons for the Drunk Sokoban fortress. The best story was taken from Experiment 1: Random

Story using Novelty Search.

Original AF Story

Sifted Story

Best Generated Story

<1>[T.73ab] moved to 3,6
<1>[T.76a3] moved to 6,6
<1>[T.d89f] moved to 10,5
<2>[T.76a3] moved to 7,6
2>[T.d89f] moved to 10,6
<3>[T.73ab] moved to 4,6
<3>[T.d89f] moved to 11,6
<4>[T.73ab] moved to 4,5
<4>[T.d89f] moved to 11,5
5>[T.73ab] moved to 5,5
<5>[T.76a3] moved to 6,6
<5>[T.d89f] moved to 12,5
<6>[K.fc7c] chased [T.d89f]

[

[

[

[

[

[

[

[

[

[

[

[

A

A

<6>[T.73ab] moved to 5,4
6>[T.76a3] moved to 6,5
<6>[T.d89f] moved to 12,4
<7>[T.73ab] moved to 5,3
<7>[T.76a3] moved to 6,6
<7>[T.d89f] moved to 11,4
8>[K.fc7¢c] chased [T.d89f]
<8>[T.73ab] moved to 5,2
<8>[T.76a3] moved to 6,5
8>[T.d89f] moved to 11,3
<9>[T.73ab] moved to 5,1
<9>[T.76a3] moved to 6,6

A

A

A

<9>[T.d89f] blocked by [=.23f6]

<10>[G.3305] died
<10>[K.fc7c] chased [T.d89f]
<10>[T.73ab] took [$.1a6e]

<1>[T.76a3] moved to 6,6
<1>[T.73ab] moved to 3,6
<4>[T.d89f] moved to 11,5
<6>[K.fc7c] chased [T.d89f]
<6>[T.76a3] moved to 6,5
<7>[T.d89f] moved to 11,4
<9>[T.d89f] blocked by [=.23f6]
<10>[T.73ab] took [.1abe]

<10> [G.3305] died

<12> [K.fc7¢c] chased [T.d89f]
<13> [T.76a3] moved to 5,5
<13> [T.73ab] took [.6d7D]
<15>[K.fc7c] took [T.d89f]
<20>[K.7479] chased [T.76a3]
<21>[T.73ab] took [.9fe4]
<22> [T.73ab] blocked by [=.2486]
<24> [K.7479] chased [T.76a3]
<25> [T.73ab] took [.1b0¢]
<26>[T.73ab] blocked by [=.0cc4]
<26>[K.7479] chased [T.76a3]
<29>[T.73ab] took [.0bdf]

<29> [K.7479] took [T.76a3]
<32> [T.73ab] moved to 8,1
<38> [T.73ab] took [.6666]
<41>[T.73ab] took [.6924]

<43> [T.73ab] took [.db0a)
<45>[T.73ab] took [$.4709]
<49>[T.73ab] moved to 11,1
<50>[K.fc7c] chased [T.73ab]
<53>[K.fc7c] took [T.73ab]

<1>[pilots2] posted to 6,6
<1>[pilots] flew to 3,6

<4>[pilots3] learned to 11,5
<6>[helicopter] injured [pilots3]
<6>[pilots2] enriched to 6,5
<7>[pilots3] mined to 11,4
<9>[pilots3] shopped by [jet]
<10>[pilots] flew [airplane]
<10>[plane] gained
<12>[helicopter] injured [pilots3]
<13>[pilots2] tried to 5,5
<13>[pilots] went [airplane2]
<15>[helicopter] injured [pilots3]
<20>[helicopter2] alphabetized [pilots2]
<21>[pilots] went [airplane3]
<22>[pilots] flew by [jet2]
<24>[helicopter2] overcame [pilots2]
<25>[pilots] flew [airplane4]
<26>[pilots] flew by [jet3]
<26>[helicopter2] radiated [pilots2]
<29>[pilots] flew [airplane5]
<29>[helicopter2] filled [pilots2]
<32>[pilots] went to 8,1
<38>[pilots] flew [airplane6]
<41>[pilots] went [airplane7]
<43>[pilots] went [airplane8]
<45>[pilots] flew [airplane9]
<49>[pilots] went to 11,1
<50>[helicopter] injured [pilots]
<53>[helicopter] injured [pilots]

Table 5
Story log comparisons for the Castle fortress. The best story was taken from Experiment 2: Trope Story using
Novelty Search.

Original AF Story

Sifted Story

Best Generated Story

<2>[G.4709] moved to 10,6
<3>[G.6924] moved to 12,6
<3>[L.6d7b] moved to 5,3
<5>[G.4709] moved to 10,5
5>[L.6d7b] moved to 5,2
5>[X.1a6e] moved to 9,3
6>[B.5b49] moved to 12,1

[

[

[

[

[

A

A

A

A

7>[G.4709] moved to 11,5
7>[L.6d7b] moved to 5,3
<9>[G.4709] moved to 12,5
<9>[G.6924] moved to 11,6
<9>[L.6d7b] moved to 5,4
<9>[X.1a6e] moved to 9,2
<11>[G.4709] moved to 11,5
<11>[G.6924] moved to 11,5
<11>[L.6d7b] moved to 6,4
<11=[X.1a6e] added [$.3305] at 10,2
<13> [G.4709] moved to 11,6
<13> [G.6924] pushed [*.9fe4]
<13> [L.6d7b] moved to 7,4
<13> [X.1a6e] moved to 9,1
<15> [G.6924] moved to 10,4
<15> [L.6d7b] chased [$.3305]
<16>[L.6d7b] chased [$.3305]
<17> [G.6924] moved to 11,4
<17> [L.6d7b] chased [$.3305]
<18>[L.6d7b] chased [$.3305]
<19>[G.4709] moved to 10,6

A

e

Table 6

<6>[B.5b49] moved to 12,1
<11>[X.1a6e] added [$.3305] at 10,2
<15> [L.6d7b] chased [$.3305]
<15>[G.6924] moved to 10,4
<21>[X.1a6e] added [$.6f30] at 8,1
<21> [B.5b49] chased [L.6d7b]
<22> [B.5b49] took [L.6d7b]

<27> [G.4709] moved to 8,4

<29> [G.4709] pushed [*.6666]
<31> [X.1a6e] added [$.ab76] at 8,3
<35>[G.6924] pushed [*.6666]
<45>[X.1a6e] moved to 6,1
<49>[G.4709] moved to 9,2
<51>[B.5b49] moved to 10,3
<57>[G.6924] moved to 10,2
<61>[X.1a6e] added [$.8a85] at 5,1
<71> [X.1a6e] added [$.3c08] at 6,2
<81>[X.1a6e] added [$.97eb] at 7,1
<91> [B.5b49] moved to 8,3

<93> [X.1a6e] moved to 7,1

<93> [G.4709] pushed [*.6666]
<116> [B.5b49] moved to 7,2

<121> [G.4709] moved to 7,1

<121> [X.1a6e] added [$.e832] at 5,2
<121>[G.6924] moved to 12,4
<141>[X.1a6e] added [$.d0a5] at 3,2
<151>[B.5b49] moved to 7,3
<155>[G.6924] moved to 12,6
<161>[G.4709] moved to 8,4
<161>[G.6924] moved to 12,5

<6>[plane] took to 12,1
<11>[pilots] flew [jet] at 10,2
<15>[helicopter] injured [jet]
<15>[airplane] traversed to 10,4
<21>[pilots] flew [jet2] at 8,1
<21>[plane] went [helicopter]
<22>[plane] gained [helicopter]
<27>[airplane2] annoyed to 8,4
<29>[airplane2] favored [kite]
<31>[pilots] flew [jet3] at 8,3
<35>[airplane] lifted [kite]
<45>[pilots] flew to 6,1
<49>[airplane2] repaid to 9,2
<51>[plane] gained to 10,3
<57>[airplane] crashed to 10,2
<61>[pilots] flew [jet4] at 5,1
<71>[pilots] went [jet5] at 6,2
<81>[pilots] flew [jet6] at 7,1
<91>[plane] travelled to 8,3
<93>[pilots] flew to 7,1
<93>[airplane2] warned [kite]
<116>[plane] travelled to 7,2
<121>[airplane2] shifted to 7,1
<121>[pilots] went [jet7] at 5,2
<121>[airplane] travelled to 12,4
<141>[pilots] went [jet8] at 3,2
<151>[plane] broke to 7,3
<155>[airplane] crashed to 12,6
<161>[airplane2] beat to 8,4
<161>[airplane] visited to 12,5

Story log comparisons for the Zelda fortress. The best story was taken from Experiment 2: Trope Story using
Novelty Search. Interestingly enough, also using pilots as the main character although randomly selected.

Original AF Story

Sifted Story

Best Generated Story

<1>[0.4114] moved to 7,4

<2>[0.4114] moved to 6,4

<3>[0.4114] moved to 7,4

<4>[0.4114] moved to 8,4

<5>[0.4114] moved to 8,3

<6>[0.4114] moved to 8,2

<7>[0.4114] moved to 8,3

<8>[0.4114] moved to 9,3

<9>[0.4114] moved to 9,4

<10>[0.4114] moved to 9,5

<11>[0.4114] chased [?.e7b5]
<12>[0.4114] chased [?.e7b5]
<13>[0.4114] chased [?.e7b5]
<14>[0.4114] took [?.e7b5]
<15>[0.4114] transformed into [O.c31a]
<16>[0.c31a] chased [>.34c6]
<17>[0.c31a] chased [>.34c6]
<18>[0.c31a] chased [>.34c6]
<19>[0.c31a] chased [>.34c6]
<20>[0.c31a] chased [>.34c6]
<21>[0.c31a] chased [>.34c6]
<22>[0.c31a] chased [>.34c6]
<23>[0.c31a] chased [>.34c6]
<24>[0.c31a] chased [>.34c6]
<25>[0.c31a] chased [>.34c6]
<26>[0.c31a] chased [>.34c6]
<27>[0.c31a] chased [>.34c6]
<28>[0.c31a] chased [>.34c6]
<29>[0.c31a] chased [>.34c6]
<30>[0.c31a] died

Table 7

<1>[0.4114] moved to 7,4
<2>[0.4114] moved to 6,4
<3>[0.4114] moved to 7,4
<4>[0.4114] moved to 8,4
<5>[0.4114] moved to 8,3
<6>[0.4114] moved to 8,2

<7>[0.4114] moved to 8,3

<8>[0.4114] moved to 9,3

<9>[0.4114] moved to 9,4

<10>[0.4114] moved to 9,5

<11>[0.4114] chased [?.e7b5]
<12>[0.4114] chased [?.e7b5]
<13>[0.4114] chased [?.e7b5]
<14>[0.4114] took [?.e7b5]
<15>[0.4114] transformed into [O.c31a]
<16>[0.c31a] chased [>.34c6]
<17>[0.c31a] chased [>.34c6]
<18>[0.c31a] chased [>.34c6]
<19>[0.c31a] chased [>.34c6]
<20>[0.c31a] chased [>.34c6]
<21>[0.c31a] chased [>.34c6]
<22>[0.c31a] chased [>.34c6]
<23>[0.c31a] chased [>.34c6]
<24>[0.c31a] chased [>.34c6]
<25>[0.c31a] chased [>.34c6]
<26>[0.c31a] chased [>.34c6]
<27>[0.c31a] chased [>.34c6]
<28>[0.c31a] chased [>.34c6]
<29>[0.c31a] chased [>.34c6]
<30>[0.c31a] died

<1>[land] grew to 7,4
<2>[land] grew to 6,4
<3>[land] grew to 7,4
<4>[land] grew to 8,4
<5>[land] grew to 8,3
<6>[land] grew to 8,2
<7>[land] grew to 8,3
<8>[land] grew to 9,3
<9>[land] grew to 9,4
<10>[land] grew to 9,5
<11>[land] grew [continent]
<12>[land] grew [continent]
<13>[land] grew [continent]
<14>[land] grew [continent]
<15>[land] grew into [explorer]
<16>[explorer] kept [territory]
<17>[explorer] discovered [territory]
<18>[explorer] kept [territory]
<19>[explorer] treasured [territory]
<20>[explorer] journeyed [territory]
<21>[explorer] lost [territory]
<22>[explorer] kept [territory]
<23>[explorer] journeyed [territory
<24>[explorer] journeyed [territory
<25>[explorer] journeyed [territory
[]
[]
[]
[]
[]

<28>[explorer] journeyed [territory
<29>[explorer] journeyed [territory
<30>[explorer] journeyed

]
[]
[]
<26>[explorer] journeyed [territory]
<27>[explorer] journeyed [territory]
[]
[]

Story log comparisons for the Lock ’n Key fortress. The best story was taken from Experiment 3: AU Story using
Novelty Search and a set main character of ‘explorer’. (Note: Log slightly modified to fit within paper margins)

	1 Introduction
	2 Background
	2.1 Simulations and Emergent AI Behavior
	2.2 Story Sifting
	2.3 Narrative Generation

	3 Methods
	3.1 Amorphous Fortress Environment
	3.2 Log Sifting
	3.3 Grammar Extraction and Word Replacement
	3.4 Story Generation
	3.5 Evolutionary Search
	3.5.1 Genome Representation
	3.5.2 Mutation
	3.5.3 Fitness Evaluation

	4 Experiments
	4.1 Quality Diversity Algorithms
	4.2 Experiment Setup
	4.3 Fortress Environments

	5 Results and Discussion
	6 Future Work
	7 Conclusion

