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Abstract

Designing engaging game environments, particularly for exploration, requires understanding diversity in ex-
ploratory behaviour. This study introduces a novel framework to model exploration via exploratory agents. This
framework advances beyond prior work like PathOS+. Our agents employ multiple theoretically-grounded moti-
vations and complex behaviour characterisation to distinguish between levels designed to encourage meaningful
exploration and those that do not. Validated through human studies (40 participants, 14 level pairs), our coverage
metric reliably reflects engagement differences, while combining coverage with novelty captures spatial-structural
variations. This work establishes a richer foundation for Al-driven design tools that advance both exploration
modelling and player engagement analysis.
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1. Introduction

Game designers create vast quantities of levels, yet conventional approaches fail to adequately model
the diversity of spatial exploration. We introduce a framework modelling exploration with Al agents
that advances beyond prior work such as PathOS+ [1] and Cook’s work [2], providing designers with
evaluative tools that identify levels that model more complex exploration. Our approach models
exploration through a richer lens featuring multiple motivations and behaviour characterisation. Our
approach models exploration through motivations inspired by level design theory from Totten [3].

We created 50 3D levels (25 "more engaging” and 25 "less engaging”) using Unity to validate our
agent framework. These levels operationalise Totten’s principles. Our “more engaging” levels featured
meaningful object distribution at vantage points, structured layouts, and clear paths. Meanwhile, our
“less engaging” levels feature objects clustered haphazardly (such as along boundaries). These were
explicitly designed to test whether our agents could detect the differences between these levels.

We validated perceptions of how engaging a level was through human evaluations (40 participants,
14 level pairs), confirming participants consistently distinguished types of level (83% agreement).

1.1. Exploratory Agents

Exploratory agents model the diversity of exploratory behaviour through theoretically-grounded
motivations and advanced characterization. While our initial framework [4] simulated open-ended
exploration, it lacked the richness needed for practical design applications. The current work makes
advances beyond both our prior approach and systems like PathOS.

Our agents now operate with defined start/end points while maintaining rich exploratory diversity.
We also integrate Totten’s level design principles [3] to create multiple theoretically-grounded motiva-
tions. We replace simplistic context steering with our utility system to enable complex goal evaluation
and action selection, which allows us to capture nuanced exploration beyond current methods.

This framework represents an improvement in modelling exploration. Taking exploratory agents
from reactive simulators into potential diagnostic tools that quantify engagement through metrics like
coverage, novelty, and inspection.
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2. Background

2.1. Modelling Exploration

Prior research has established valuable frameworks for understanding exploratory behaviour: Si’s player
study [5] made significant contributions by identifying distinct behavioural archetypes (wanderers,
seers, pathers, targeters) through carefully designed experimental conditions. Their constrained tasks
(e.g., 3-minute map surveys) provided important methodological rigor that revealed how task parameters
shape exploration patterns.

Pathak’s curiosity-driven agents [6] pioneered the use of intrinsic motivation as a computational
driver for exploration, demonstrating how prediction-error minimisation can generate meaningful
exploration in reward-sparse environments.

These foundational studies provide important insights into how exploration can be modelled in video
games. Our work builds upon this existing work by expanding models of exploration to encompass
a broader motivational spectrum as identified in psychological literature. Where prior research has
examined specific exploration dimensions in isolation, our framework integrates these perspectives to
model how inspective, diversive, and affective motivations interact within complex game environments.
This allows us to preserve the methodological strengths of constrained experimental approaches while
capturing the emergent richness of exploratory behaviour in more naturalistic settings.

2.2. Agent Frameworks for Design

Recent years have seen valuable innovations in Al-assisted design tools that model exploratory behaviour.
PathOS [7] pioneered agent-based navigation prediction, demonstrating how simulated paths could
reduce the burden of play testing. Its focus on accessibility and generalisability established important
benchmarks for practical design tools. PathOS+ [1] significantly advanced this paradigm by introducing
concrete data features (mass tagging, directional arrows) to reduce subjectivity in expert evaluations.
This represents a commendable step toward bridging Al analysis and human design intuition. The
ultimate goal is to reduce subjectivity in expert evaluations and improve the overall usability testing
process. Also, Guerrero-Romero et al [8] present agents to assist with game design and testing. These
include: Map Explorer, Novelty Explorer and Curious Agent. The map explorer focuses on spatial
exploration by covering as much of the reachable areas of the game map as possible. It provides
information such as the number of different positions visited, the total percentage of the map explored,
and the game ticks required to complete the exploration. The novelty explorer emphasises exploring
different game states rather than just physical positions. It aims to traverse as many unique game states
as possible, which is related to the concept of novelty appraisal in intrinsically motivated agents. This
approach helps in reducing uncertainty by connecting learning processes with count-based exploration.

The curious agent is designed to interact with game elements, prioritising those that have not
been interacted with before. Providing data on the number of elements that are interacted with,
actions triggered during interactions, and the game ticks required for these interactions. These agents
collectively provide valuable insights into spatial exploration and interaction with objects, aiding game
designers in evaluating and refining game mechanics and parameters. However, they are not designed
to give a model of exploratory behaviour and assess how suitable a level might be for exploration.

These systems established important groundwork for operationalising exploration in design contexts.
Our approach extends this foundation in modelling exploration as motivationally influenced behaviour
rather than purely reactive wayfinding. While PathOS and PathOS+ effectively capture navigation
patterns, and Guerrero-Romero’s agents quantify atomic exploration aspects, our framework integrates
Totten’s architectural principles to simulate how exploratory motivations manifest in diverse behavioural
signatures. This allows us to preserve the practical benefits of prior systems while adding deeper
theoretical grounding in why players explore, enabling richer engagement predictions that complement
existing tools.

In [2] Cook attempts to generate exploratory 3D spaces (“walking simulators”) which reveals critical
limitations in vision-only approaches, in that they failed to capture affective qualities, while content



generation suffered from semantic incoherence. This highlights a persistent gap: existing tools model
exploration as reactive wayfinding rather than motivationally influenced behaviour.

2.3. Theoretical Foundation for Exploration

Totten’s architectural principles [3] provide the missing theoretical basis for exploration modelling. His
principles identifies distinct engagement drivers.

The concepts of narrative stages and meditative spaces are described by Totten as “reward spaces”.
These spaces are distinguishable from the rest of the level in terms of lighting, music or spatial charac-
teristics. A narrative stage is a space in the environment which tells a story, an exposition through the
game environment. They are spaces distanced from gameplay and have a strong narrative tie to the
game. Meditative spaces are smaller, low-intensity moments of game spaces which help with game
pacing.

Totten articulates that game environments can be organised in a linear, branching, or interconnected
manner. For example, labyrinths afford a trajectory that can function as a linear odyssey. In this sense,
paths can be used between locations in landscapes to guide players to interesting locations.

Totten further mentions the use of framing. Framing is when foreground elements are used to
surround the view of something important. These highlight objects that would be worth investigating
and potentially make the level more engaging for exploration. Refuges are “comfortably enclosed dark
spaces”. They may be perceived as comfortable as it would be accommodating to the abilities of the in
game character (not too small or not too large). For example, a small section of trees in a large open
space might be considered a refuge. Unlike prior computational approaches, Totten offers a unified
theory linking spatial design to exploratory behaviour informing our motivation architecture.

Cook [2] independently recognises the importance of these elements (particularly framing devices
and landmarks) but lacks the theoretical framework to operationalize them computationally. This
theoretical gap explains their struggle to generate coherent exploratory spaces despite using advanced
techniques.

Existing tools fundamentally lack theoretically-grounded motivational diversity, integrated behaviour
characterisation across exploratory dimensions, and predictive models of engagement quality. Our work
bridges these gaps by introducing a framework that synthesises Totten’s principles with utility-based
decision-making, enabling the first agent system capable of evaluating exploratory engagement through
operationalised metrics.

3. Exploratory Agent Framework

We introduce an agent to explore these levels and derive metrics that might distinguish them as an
extension of our previous work. Other works such as Pathak et al’s [6] techniques are different from
ours because our agent is not meant to be general in the sense that it would explore many different
environments using intrinsic motivations. Our agent is given motivations and it will explore in different
ways in different environments. Our framework uniquely models exploratory behaviour, attempts
to evaluate how well a game level supports exploration, building directly upon our prior work in
this domain. By leveraging exploratory agents tailored for this purpose, we address an unexplored
niche level evaluation, providing insights for game designers aiming to enhance engagement through
exploration. Our agent is utility-based and operates as follows:

« Environment Scanning: The agent periodically scans its surroundings within a defined field
of view (FOV) and vision length (up to 230 Unity units of 350x350 level, covering 2/3rds of the
map).

« Goal Generation: The agent considers various “modules” that evaluate nearby objects and areas.

« Score Assignment: Each identified goal is assigned a score (0 to 1), influenced by object
significance, spatial relationships, and distance from the agent.
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Figure 1: A flowchart showing how the agent framework functions

+ Goal Selection and Navigation: The agent starts from a designated start point (which is a
common practice in level design) and sequentially visits the highest-scoring goals. Once goals
are visited (the agent comes within 10 units of the goals position), that object is discounted from
future calculations. When no more goals remain, the agent proceeds to the designated endpoint.
Conlflicting scores are resolved through simply picking the closest goal, if the conflicting goals
are the same distance, then a random one is picked between the two.

Several parameters in the system can be adjusted, including Field of View (defines the angular breadth
of the agent’s vision), Length of View (maximum distance for object detection ( 230 units in Unity)),
Step Size (distance travelled before rescanning and recalculating goals) and Goals (maximum number of
goals stored at any time). The figure below shows a visual representation of the framework.

3.1. Modules

Modules are used to form goals using the list of objects by applying certain criteria. Most modules,
excluding Anticipation and Refuges, use a form of knowledge modelling via manually tagging entities



in Unity. Tags help identify entity types for scripting. For example, a tree might be tagged as “Tree” to
identify tree types. This makes it easier to write scripts that interact with specific objects based on their
assigned tag, without needing to manually reference each object individually. We have attempted to
model the phenomena mentioned by Totten [3] in our agent implementation.

While our prototype requires manual Unity tagging for object identification, this is not fundamental
to the framework. Future implementations could use; procedural tagging during PCG, computer vision
approaches or semantic object recognition.

The modules used in this framework are:

« Landmarks - Detecting objects tagged as “Landmark”. Similar to how anonymous citation [4]
models large object detection. Takes an object tagged as “Landmark” and compares it against the
largest “Landmark” object it has seen so far. If no “Landmark” object has been seen so far, the
largest “Landmark” object is set to the first “Landmark” object the agent has observed. A value of
between 0 and 1 is returned, this value represents the percentage of how large the observed object
is compared to the largest object observed. 1 is returned if the observed object is the largest one
seen so far. Totten [3] mentions landmarks acting as eye candy, they should be able to be seen
from multiple points of the level, as such we thought size was an appropriate scoring factor.

« Narrative Stages - Detecting objects tagged as “Narrative Stage”. Takes an object tagged as
“Narrative Stage” and returns a score of between 0 and 1. This score is determined by how
many other “Narrative Stage” objects are close to the observed one (within 10 units). The idea
behind this is that the more of these objects there are in a certain vicinity the more exposition
or environmental storytelling there could be from these objects. This module comes from the
idea of “Narrative Stages” by Totten. These are expositions told through game environments,
typically they are game spaces distanced from gameplay (e.g. a space that has no enemies) and
have a strong narrative tie to the game.

« Meditative Spaces - Detecting objects tagged “Meditative Space”. Take an object tagged as
“Meditative Space” and returns a score between 1 and 0. The score is determined by the lack
of objects (within 50 units) around the meditative space, these other objects do not have to be
tagged as “Meditative Space”. If a meditative space has 0 objects around it, the score is 1, for each
object found around the space a penalty of -0.1 is given to the score. Totten described meditative
spaces as smaller, more low intensity moments of game spaces. Having a lot of objects around
these types of spaces would increase the intensity of the meditative space.

« Framing - Detecting objects between tagged “Framer” objects. Framing is using foreground
elements to surround the view of something important as described by Totten. Takes an object
tagged as “Framer” and checks if there is another framer to the right or to the left of the object,
within camera screen space. Any object that is between the 2 framer objects is considered to be
a framed object, no matter the tag. The score is determined by the angle of the framed object
given the agent’s position. If the angle is 90 degrees, a score of 1 is given, the farther away from
90 degrees the framed objects angle is relative to the agent (to a maximum of 120 degrees or a
minimal of 60 degrees) a penalty is applied of -0.33 per 10 degrees (so the minimum score is 0).

« Paths - Detecting tagged “Path” objects. Takes an object tagged as “Path” and assigns a score of 1.
Paths can be used between locations in landscapes to guide players to interesting locations [3]. So,
if the agent encounters a path, it assumes that there will always be an interesting location at the
end of it, therefore the maximum score is given at all times when a path object(s) is encountered.

+ Anticipation - Making an estimation of the area behind the object. This is essentially the
same metric as “Anticipation Detection” used in anonymous citation [4]. An object, of any
tag (excluding “Framer”, “Meditative Space”, “narrative stage” or “Landmark”), is taken and the
penumbra of the object is calculated, given our agent is the light source. A minimum penumbra
of 10000 is required, otherwise the score is 0, this is to make sure very small objects (such as
blades of grass) are not investigated. If an object exceeds the maximum penumbra of 100000 then
the max score of 1 is given.



+ Refuges - Detecting enclosed spaces. Takes an object of any tag (excluding “Framer”, “Meditative
Space”, “Narrative Stage” or “Landmark”) and checks for any objects near it (within 10 units).
If there are no objects within this distance a score of 0 is given. For every object found near
the object being observed 0.1 is added to the score, until a max of 1 is reached. Refuges are
described by Totten as enclosed dark spaces. We measure a refuge by how enclosed a space is by
the amounts of objects surrounding it.

3.2. Baseline agents

A significant challenge in evaluating our exploratory agent framework is the lack of existing base-
lines specifically designed to model exploratory behaviour and assess how well game levels support
exploration.

We constructed a naive agent and a random agent as baselines to represent simple alternatives to
our framework. These baselines, while not directly comparable to our agent in complexity or purpose,
serve to highlight the unique capabilities of our exploratory framework. The Naive Agent moves directly
from start to end without any exploration. The random agent moves increments in a random direction
(within -135 to +135 degrees), but with a bias towards the end point. This agent is different enough
from both the naive and the exploratory agent to serve as a non-deterministic baseline. Furthermore,
we engage in a comparison with PathOS+, but we thought it wouldn’t serve as a good baseline. This is
described section 4.2.1.

4. Designing Levels and Human Judgement Comparisons

We created 50 levels in a 3D game environment: 25 were designed to be “more engaging” and 25 were
designed to be “less engaging” . We designed our more/less engaging levels according to theories of
level design according to Totten [3] and our own judgement. Levels were 3D spaces with objects placed
according to certain design principles. We designed these levels in the Unity game engine '.

More engaging levels featured spatial arrangements where objects were distributed in a manner
designed to encourage exploration. Objects were positioned at meaningful vantage points, key intersec-
tions, and visually distinct landmarks. The design relied on theories of level design for architecture,
where structured layouts, navigable paths, and visually coherent object placements might support
exploratory behaviour.

Less engaging versions were derived by taking the more engaging levels and putting the objects to
one side, clustering them in less structured ways (e.g. aligning them along a riverbank or haphazardly
bunching them together). These manipulated levels break the meaningful structure and reduce opportu-
nities for interesting exploration. Intuitively, this reduces the level’s cognitive affordances for discovery
and reduces navigational complexity.

When objects, landmarks, and points of interest are distributed in a meaningful, balanced fashion, they
create patterns that might support exploration and navigation. Conversely, when distribution is poor,
such as objects clustered haphazardly against a boundary, or strewn without logical connections, this
reduces the environment’s legibility and disrupts intuitive way finding cues. Without clear, enticing focal
points and structured levels that guide the observer’s attention, we hypothesise that the environment
becomes visually and cognitively less stimulating.

We then conducted an evaluation against human judgements to validate our assumption that the
crafted “more engaging” levels are indeed perceived as such by humans.

4.1. Methodology

We selected 14 pairs of levels (side-by-side comparisons), each pair containing one more engaging and
one less engaging variant. A total of 40 participants (all over 16 years old, who played 3D video games

'https://unity.com/



at least once a month) viewed top-down snapshots of these pairs and were asked to select which level in
each pair seemed more engaging or if they were equally as engaging. We deliberately recruited gamers
who played 3D video games at least once a month to ensure evaluators possessed knowledge to discern
exploration centric design features. This study was conducted over 1 week with participants recruited
through Reddit, X and email. We gained ethical approval from Anonymous institution with approval
number (anonymised for review) to conduct this user study.

Top-down views remove potential distractions from camera angles or first-person perspectives,
which might bias perception based on aesthetics or immersion. This perspective ensures that the
focus remains on spatial arrangement and object distribution (specifically how a designer might view a
level). We selected 14 pairs of levels to balance the statistical power needed for reliable conclusions
with the cognitive load on the participants. This number ensures enough data points for meaningful
analysis while minimising participant fatigue, which could negatively affect response quality. Drawing
inspiration from Nielsen and Landauer’s [9] principle that the probability of discovering usability issues
decreases after the fifth user due to overlapping findings, we adapted this idea to level-pair evaluations.
Testing an excessive number of pairs in one session might lead to diminishing returns, as participants
could experience cognitive overload or reduced attention, potentially biasing their responses. Although
this adaptation differs in context, the principle of balancing robustness with participant capacity remains
relevant.

In the absence of directly comparable studies within this field, we can draw parallels from broader
usability testing and game user research methodologies to justify our study design. For example, [10]
discusses the determination of sample sizes in usability studies, emphasising the balance between
statistical validity and practical constraints. Although our study involves 14 pairs of levels and 40
participants, exceeding these typical sample sizes, this approach enhances the robustness of our findings
by providing a more comprehensive data set for analysis.

To mitigate potential biases from order effects, the presentation order of level pairs was randomised
for each participant using Qualtrics > own randomisation method, ensuring no fixed sequence influenced
the responses.

4.2. Questionnaire Results

To evaluate the reliability of our exploratory agent metrics, we employed multiple statistical methods.
Inter-rater agreement was assessed using Prevalence-Adjusted Bias-Adjusted Kappa (PABAK) and
Intraclass Correlation (ICC), alongside raw agreement percentages to provide interpretable context. 83%
of responses across all evaluator pairs correctly identified the intended “more engaging” level as “more
engaging to explore”. While Cohen’s Kappa adjusts for chance agreement, its utility was diminished
here due to dataset bias. High prevalence of one category (e.g., our survey’s intentional skew toward a
preferred engagement level) and rater bias can skew marginal distributions, artificially depressing kappa
values despite strong raw agreement. For example, near-unanimous agreement in skewed data can
paradoxically yield low kappa scores, misrepresenting true consensus [11] address this, we prioritized
PABAK (which corrects for prevalence and bias) [12] and ICC (suitable for continuous/non-uniform
data) [13]. These yielded statistically significant results. PABAK showed moderate agreement with a
value of 0.437 and a p-value of 0.005. ICC also showed moderate agreement with a value of 0.5 and a
p-value of 0.00007. The preference for the intended "more engaging” levels, combined with statistically
reliable agreement, validates our survey design and metric choices.

4.2.1. Comparison Against PathOS+

While other agent frameworks, such as those used in PathOS or curiosity-driven exploration, provide
benchmarks for player navigation or potential motivations for exploration, they do not specifically
attempt to model exploratory behaviour and evaluate how well a level might support exploration.
However, PathOS+ does provide a model of exploration, via a curiosity metric. Nonetheless, we decided

*https://www.qualtrics.com/
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Figure 2: Log scale DTW heatmap of Path OS runs vs each other and the Exploratory Agent for the Engaging
levels

to compare our exploratory agent to PathOS+. Specifically, the curiosity model, which Stahlke [14]
describes in their thesis as ‘represents a player’s drive to explore the game world and see all it has
to offer, uncovering secrets and traversing as much of the map as possible. Curious players are also
interested in uncovering more information about a game’s lore and narrative, and are always on the
lookout for new content.

PathOS also includes it’s own markup system, similar to the tagging system we use in our agent
framework, where individual objects can be “marked up” with several tags such as “Final goal”, “Point
of interest”, “Mandatory Goal” and etc.

After appropriately marking up our levels we then ran PathOS plus on our engaging and less engaging
levels. Due to the stochastic nature of PathOS’s curisoity model, we decided to run it on each level 5
times and compare it to our exploratory agent’s path trajectory using Dynamic Time Warping (DTW)
[15] as well as using DTW to compare PathOS trajectories between runs. Figures 2 and 3 show these
for each engaging and less engaging level.

PathOS+ runs were found to be significantly more consistent in the less engaging levels than in the
engaging levels: Mean difference: 0.42 (4.92 - 4.50), where p < 0.001. PathOS+ vs exploratory agent
divergence is significantly lower in less engaging levels: Mean difference: 0.16 (5.82 - 5.66), where p <
0.001.

A two-sampled t-test was used to calculate statistical significance. While its stochasticity produces
variable paths in specific levels (e.g., DTW spread >3.5 in Level 19), this variability shows no correlation
with exploratory alignment (all agent DTW >5.3). PathOS’s design is optimised for QA testing, leading
to undirected randomness that conflates coverage artifacts with intentional exploration. By contrast,
our agent models goal-directed discovery through contextual environmental cues (e.g. landmark
prioritisation, engagement triggers), demonstrating behaviourally plausible exploration that isn’t
apparent in PathOS plus. The inverse relationship between PathOS’s internal variability and exploratory
alignment (e.g., Level 8: highest variability [5.44] yet worst alignment [6.09]) suggests its fundamental
mismatch with modelling exploratory behaviour.

Furthermore, PathOS+ exhibits high inter-run variability (DTW spread) in Levels 12, 17, and 20, yet
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Figure 3: Log scale DTW heatmap of Path OS runs vs each other and the Exploratory Agent for the Less
Engaging levels

this randomness reflects undirected coverage rather than intentional exploration. Its paths demonstrate
repetition, going back and forth between objects in the level (Level 12), chaotic branching into empty
spaces (Levels 17/20), and goal revisitation without purposeful discovery, this further suggests the
hallmarks of QA stress-testing rather than modelling exploration. Conversely, our exploratory agent
maintains goal-directed efficiency, avoiding non-informative areas while systematically prioritising ob-
jectives. This divergence is most pronounced in less engaging levels (1,4,8) where PathOS’s randomness
becomes extreme, yet persists even in engaging contexts (Levels 6,7,15) where PathOS exhibits unusual
determinism. The consistent DTW >5.3 between PathOS and our agent further suggests its fundamental
misalignment with exploratory principles: its coverage-maximisation exploration heuristic generates
variability that inversely correlates with true exploration quality (e.g., Level 8’s highest randomness
[DTW 5.44] coincides with worst alignment [6.09]).

PathOS+ provides excellent navigation stress-testing, while our agent specializes in motivation-driven
exploration. This complementary relationship is evidenced by, PathOS+’s superior coverage of edge
cases and our agent’s alignment with designed engagement cues.

5. Experiments

We ran experiments on a set of 40 levels (20 engaging, 20 less engaging), holding out 10 levels (5
engaging, 5 less engaging) as a test set. Giving an 80-20 train to test split.

5.1. Evaluation Metrics

We measured coverage (percentage of the map’s area visited), inspection (the number of unique or
special objects visited by the agent) and novelty (our own custom measure to reflect the diversity of
uniqueness of observed objects).

Coverage was measured by splitting the level into 10x10 cells and measuring what percentage of the
cells were visited by the agent(s). This is similar to the technique used by [4] although, our resolution



is higher.

Inspection consisted of taking all types of unique/special objects. E.g. Objects tagged as “narrative
stage”, “meditative space”, as well as objects not tagged as anything unique but only counting them as
one object (so if an agent visits one “tree” object it has effectively visited them all) and measuring if the
agent had come within 10 units of these special objects. The inspection score is the percentage of these
unique objects the agent has “visited”.

Novelty Quantifies engagement based on object-type exposure, with penalties for repetition and
peripheral visibility. N represents the novelty score at time ¢ for a given type of object. S; represent the
total novelty score at time t. At represents the time interval, where At = 1 seconds. r represents the
rate of novelty score recovery, where r = 0.03 per second. M represents the minimum novelty score an
object type can recover to, where M = 0.1. P represents the penalty applied to the novelty score when
an object type is seen, where P = 0.1. PS represents the peripheral score penalty applied to the novelty
score when an object type is seen, where PS = 0.75 = N; PS = 0.5 = N, v; represents the visibility flag at
time ¢, where v; = 1 if the object type is seen and v, = 0 otherwise.

« Initialisation: At first encounter, Ny = M = 0.1.
« Update Rules:

— If unseen (v; = 0) and not “new”:
Niy1 = min(N; + rAt, M)
— If seen (v = 1) and “new”:
Nip1 =N - P

— If seen (v = 1) and not “new”:
Nigt = N+ rt

+ Peripheral Penalty (PS):

_10.75  (£30°-45° from camera centre)
o5 (>2459

Applied as N; < PS x N; when calculating S;.

Worked Example Timeline: Agent encounters a "Grass” type.

+ t=0: First seen (central view, PS=1): N,=0.1, 55=0.1.
« t = 1: Seen again (peripheral, PS = 0.75):

Ny =Ny—P=01-0.1=0.0 (marked “not new”)
S, =0.0x0.75 = 0.0

« t = 2: Not seen: N, = min(0.0 + 0.03 x 1,0.1) = 0.03.
« t = 3: Seen peripherally (PS = 0.75):

N3 = Ny +rAt = 0.03+ 0.03 = 0.06 (not "new”
S3 = 0.06 x 0.75 = 0.045

This novelty measure ensures that with the recovery rate r that novelty rebounds if objects are in-
frequently seen. Also, the peripheral discounting reflects attention bias to the centre that humans
prioritise [16]. Also, visual novelty detection frameworks often weight central regions more heavily
due to foveal resolution advantages [17]. We hypothesise that higher novelty scores indicate diverse,
salient exploration.



5.2. Results

Our exploratory agent showed the greatest sensitivity to level differences in terms of coverage. Sta-
tistical tests (t-tests with Bonferroni correction) confirmed that coverage was significantly different
between the more engaging and less engaging levels. Inspection and novelty did not show statistically
significant differences, but their trends were still informative. The mean of Novelty alone fails to
distinguish between sustained exploration (consistent exposure to new stimuli) and sporadic novelty
spikes (infrequent, unpredictable discoveries). Statistical manipulations (mean, standard deviation and
max) of novelty address this. The standard deviation quantifies the variability in novelty over time.
A high standard deviation indicates erratic exploration (e.g. alternating between new and familiar
regions), while low standard deviation suggests stable engagement. The negative skew in novelty
standard deviation for the agent implies that “more engaging” levels elicit consistent novelty, avoiding
monotony without chaotic spikes. Max novelty identifies peak “surprise” moments. High max novelty
correlates with memorable, unexpected discoveries that might anchor player attention. While max
novelty lacked significance post-Bonferroni, its inclusion guards against over-smoothing engagement
signals (e.g., penalising levels with rare but impactful discoveries).

Coverage in particular shows a much more positive skew for differences, favouring the engaging
levels, as shown in figure 4, compared to the naive and random agents which show a normal distribution.
The same differences cannot be seen as strongly in inspection or standard deviation of novelty for all
agents. However, the standard deviation of novelty for the exploratory agent does show a negative skew
(though not as strong as the positive skew shown in coverage for the actual agent), indicating there
is potential in using standard deviation of novelty as a differentiator for our more and less engaging
levels. To assess the differences between the more engaging and less engaging levels, we employed
t-tests to compare our evaluation metrics, coverage, inspection, and novelty (max, mean and standard
deviation), across the two level categories for all three agents (our exploratory agent, random, and
naive). The t-test is a statistical method for evaluating whether there are significant differences between
two independent groups, which aligns with the experimental setup of contrasting more engaging and
less engaging levels. This approach allows us to determine whether the performance metrics of our
exploratory agent effectively capture the structural differences in the level design. The results provided
valuable insight into how well our agent aligns with our hypothesis that certain metrics, particularly
coverage, are sensitive to level design features.

Given that multiple t-tests were conducted across different metrics and agent types, the Bonferroni
correction was applied to mitigate the increased risk of Type I error. Without such adjustments, the
likelihood of falsely rejecting the null hypothesis increases with the number of statistical comparisons.
By dividing the significance threshold (commonly set at 0.05) by the number of tests, the Bonferroni
correction ensures a stricter criterion for significance, enhancing the robustness of the conclusions.
This precaution was especially important in validating our exploratory agent’s superior performance
compared to the random and naive baselines. Because we performed 15 t-tests the adjusted significance
level was 0.003.

The poorer performance of the random and naive agents, as anticipated, underscores the strength
of the exploratory agent framework. The naive agent’s linear trajectory from start to end neglects
any consideration of environmental features, resulting in minimal coverage and interaction with the
level’s elements. The random agent, though less deterministic, fails to prioritise meaningful goals,
leading to inefficient and aimless exploration. In contrast, the exploratory agent incorporates a utility-
based framework with defined goals and scoring systems, enabling it to navigate and interact with the
environment in a structured and purposeful manner. This design ensures that the exploratory agent
aligns more closely with the qualities that characterise engaging levels, particularly through its high
coverage and nuanced sensitivity to level design features.

These results support the validity of the exploratory agent’s design and its metrics, further emphasis-
ing its utility as a tool for evaluating levels.
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6. Discussion and Future Work

Our study establishes a framework that advances exploratory agent design beyond prior systems like
PathOS. While coverage emerged as a robust indicator of engagement, the synergistic power of combined
metrics, particularly coverage and novelty, demonstrates how quality modelling captures nuances in
exploratory behaviour that single metric approaches miss. This represents a paradigm shift, where prior
systems like PathOS+ lacked nuance in modelling exploratory behaviour, our framework evaluates how
spatial-structural variations inspire exploration. The ability of coverage to differentiate between our
“less engaging” and “more engaging” levels provides compelling evidence that agent-derived metrics
can predict human engagement perceptions. This addresses a core limitation noted by designers using
PathOS+.

The weaker performance of inspection and novelty metrics opens an avenue for future work, our
current object-centric evaluation overlooks how narrative elements (e.g. Totten’s "meditative spaces”)
might inspire affective exploration. This suggests that our motivational architecture requires further
diversification to fully capture experiential quality dimensions.

Future work could involve integrating Totten’s narrative staging and refuge concepts to model
affective exploration, creating agents that respond to environmental storytelling. We also plan to
implement our agent framework in procedural content generation (PCG) pipelines to assist in the
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creation of levels that support exploration. Incorporating additional motivational drivers to capture the
full spectrum of exploratory behaviour identified in the psychological literature is also another area of
investigation.

By addressing these directions, our framework could evolve into a tool for game designers, providing
theoretically-grounded insights throughout the design process while advancing computational models
of player experience. The foundation established here demonstrates significant potential for bridging
architectural theory with Al-driven game design tools.

7. Conclusion

We demonstrated that a utility-based exploratory agent can differentiate the levels deemed more
engaging from those deemed less engaging. By capturing differences in spatial layouts and object
distributions, the agent’s coverage metric, and to some extent combined metrics, can serve as proxies of
engagement. This study lays the foundation for integrating exploratory agents into the design process,
where they can serve as automated evaluators in designer workflows, filtering out less engaging content
and driving the iterative improvement of game levels.
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