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Abstract
Recent advances in board game agents have led to superhuman performances in various games, but their

decision-making processes remain opaque even to experienced players and are not cognitive-plausible from a

human perspective. Based on criteria for cognitive-plausible systems, we introduce an approach that emphasizes

interpretable knowledge representation through pattern-based and hierarchical structures. Our approach uses

Genetic Programming to learn feature programs that capture spatial relationships on the game board. In addition,

it utilizes decision trees to model agent behavior based on these feature programs. The result is a hierarchical,

pattern-based model for generating post-hoc explanations for board game agents. We show that our method

generates comprehensible explanations in Tic-Tac-Toe. We then discuss the current limitations in generalizing the

approach to more complex games using Connect 4 as an example.
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1. Introduction

Although board game agents have demonstrated impressive superhuman playing strength in various

domains [1, 2], they are not fully comprehensible in terms of why an action is taken, even for professional

players. Furthermore, from a cognitive science perspective, the decision-making process of these agents

does not resemble the way humans play games [3, 4]. Mándziuk proposes multiple “facets of cognitive-

plausible playing systems” about knowledge acquisition and representation [4]. The method we propose

addresses both postulates from Mańdziuk [4] concerning knowledge representation: (P1) “Game-related

concepts may be effectively represented and processed with the use of pattern-based representation.”

(P2) “game-related knowledge should be represented in a hierarchichal structure with various inter-

and intra-level connections.” To that end, we present an approach for explaining board game agents by

learning feature programs, i.e., programs that represent single or multiple grid cells and their relation

to other cells with Genetic Programming. This is similar to P1 and the work about visual routines –

a method to extract spatial information from scenes [5]. In addition, feature programs can represent

intra-level connections of P2. By learning a decision tree on the feature activation of these programs,

our method can highlight activated features for given state-action pairs, i.e., a hierarchical structure

representing the inter-level connections of P2.

An important point worth discussing in advance is whether these postulates are necessary or

sufficient for human comprehensibility and cognitive-plausibility. While pattern-based and hierarchical

representations may be necessary because they correspond to human perception of recurring structures

and the organization of knowledge, they are unlikely to be sufficient [6]. Human comprehensibility

also depends on other aspects, such as the abstraction and combination of strategies [7], analogical
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thinking [8], and the ability to convey explanations in intuitive terms. We will show in our approach

that adherence to the postulates contributes to more interpretable models, but a broader spectrum of

mechanisms is needed to better approximate cognitive-plausibility [9].

We show that the proposed method generates comprehensible explanations for Tic-Tac-Toe. In

addition, we present preliminary results for Connect 4 and discuss the limitations that need to be

overcome to apply the method to more complex games.

Our contributions are:

• We present first steps towards a cognitive-plausible approach to explain board game agents.

• We show a proof of concept for generating explanations using the game Tic-Tac-Toe as an example.

• We conduct a case study which outlines the improvements necessary to apply the method on

more complex games such as Connect 4.

The remainder of the paper is structured as follows: In Section 2 we review related work about

genetic programming in the context of board games, as well as program synthesis approaches applied

to explainability and interpretability in games. Section 3 introduces the domain-specific language and

the representation of programs. The data collection process and methodology are described in Section 4.

Subsequently, Section 5 presents and discusses the results of our case studies on Tic-Tac-Toe and Connect
4. Finally, Section 6 summarizes our contributions and outlines directions for future work.

2. Related Work

The majority of research that uses GP in the context of board games, search for heuristics for evaluating

game states. These heuristics are evolved over mathematical functions for games such as Lose Checkers,

Reversi, or Seven Wonders [10, 11, 12]. However, searching for heuristics is undesired, as a search

algorithm is still necessary. Besides, using heuristics in a search algorithm is not fully explainable, and,

in most cases, is cognitively implausible. Nevertheless, heuristics for evaluating game states, are more

interpretable than using a combination of deep learning and search algorithms, similar to AlphaZero

[1].

Silver et al. learn logical programs which are extracted from decision trees for simple, game-related

tasks [13]. In [14], an inductive logic programming algorithm is introduced that finds comprehensible

game strategies by providing the game rules as building blocks for logic programs for simple board

games. Currently, our method does not use game rules, as they can be derived from the state-action

pairs. However, our method is more difficult to learn without game rules.

The use of programs for explainability in the context of game AI was introduced for a maze-runner

agent and two simplified Atari games: Space Invaders and Asterix [15]. In contrast to generating

explanations, large language models are used to directly evolve programs as policies for a wide range

of digital games, as well as programs as heuristic functions for board games [16].

The closest work to ours is by Soemers et al. [17], in which game tactics are extracted from linear

models trained with self-play and converted into decision and regression trees. To be able to compare

game traces collected from human participants with those collected by black-box agents in future work,

we decided to generate post-hoc explanations from game traces without using the logits of trained

policies, i.e., the raw output predictions of trained machine learning models before turning them into

probabilities with the softmax function. Therefore, we only use state-action pairs collected from game

agents without logits of a trained oracle.

3. Program, Domain-specific Language & Problem Domain

Programs are represented by a typed domain-specific language (DSL) which closely resembles the

Lisp programming language [18]. The search space is constructed by using a uniformly distributed

probabilistic grammar [19] shown in Table 1. Our DSL is inspired by the work about visual routines

[5, 13], which uses a fixed set of basic operations to assemble different perception functions to reason



Table 1
The domain-specific language used. The type column shows one type for values and several types separated by
an arrow for functions. The type after the final arrow indicates the function’s return type. The types before the
last arrow are the types of the input parameters.

Primitives / Values Description Type

0, 1, 2 integer values int
$1 2D grid observation of the game board board
X, O, Empty possible objects on the board object
stateObject an object on the board with coordinates so (stateObject)
if standard if-clause bool→ func→ func→ func
eq-obj? checks if two objects are equal stateObject→ object→ bool
cell cell object with x and y coordinate int→ int→ cell
get get a object on the board board→ cell→ so
get-game-piece get the object type of a stateObject so→ object
get-board-feature get a feature and its activation for a given object board→ so→ object→ feature
not negates a Boolean value bool→ bool
and conjunction of two Boolean values bool→ bool→ bool
or disjunction of two Boolean values bool→ bool→ bool

Listing 1 An example feature program generated from the DSL. $1 is the input state of the board game.

This program is activated if the cells on position (2,0) and (1,0) are the same, so this feature could be

used in combination with another feature to infer if position (0,0) lead to a win or lose of a game in

Tic-Tac-Toe.

1 (get-board-feature
2 $1
3 (get $1 (cell 2 0 ))
4 (get-game-piece (get $1 (cell 1 0 )))
5 )

about properties of shapes and spatial relations. Since our focus is on board games with a grid-like

board and game pieces, the building blocks of our DSL consist of control flow production rules (if

clauses and Boolean operators), integers, and methods to get pieces on the board and compare them.

The primitive get-board-feature(board, stateObject, object) -> feature, gets one or

multiple cells and checks if they are of the same object as the third parameter. If they are the same the

feature program is activated. stateObject are always cells of the current state of the board game,

while object is always a type provided by the game or environment. The board feature is later able to

check if for a specific state this feature program is activated, so board features are actually independent

from games and board states and, thus, transferable to other games in the future.

Listing 1 shows an example feature program generated from the DSL. $1 is the input state of the

board game. This program is activated if the cells on position (2,0) and (1,0) are the same, so this feature

could be used in combination with another feature to infer if position (0,0) lead to a win or lose of a

game in Tic-Tac-Toe

Problem Domain To simplify the problem domain, we currently restrict ourselves to simple, tradi-

tional board games which are fully observable and turn-based two player games such as Tic-Tac-Toe
and Connect 4. These games allow us to verify that the created explanations are also correct, since the

decision making processes of these games are relatively simple compared to modern games, which

depend on complex game mechanics.
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Figure 1: Overview of the proposed method: First, we collect gameplay data by using an deterministic agent
that plays in an environment. Then, we use this data of collected state-action pairs to learn explanations with
genetic programming in combination with a decision tree to select important features. Once the important
features have been learned, the state-action pairs can be used to generate post-hoc explanations of the data by
highlighting the activated features. Since the decision tree grows too large, we will only show selected paths in
order to describe the results in Table 2.

4. Methodology

4.1. Overview

The goal of this work is to generate post-hoc explanations for black-box board game agents. Figure 1

shows an overview of the proposed approach. First, we collect gameplay data by using an agent that

plays in an environment, here it is Tic-Tac-Toe or Connect 4. The collected state-action pairs are then

used to learn explanations with genetic programming in combination with a decision tree to select

important features. Once the important features have been learned, the state-action pairs can be used

to generate post-hoc explanations of the data by highlighting the activated features. Since the decision

tree grows too large, we will only show selected paths in order to describe the results in Table 2. In the

following, we will explain the different parts of the method.

4.2. Deterministic Agent & Data Collection

To ensure a better validation, we restricted our method to deterministic minimax agents, since decision-

making is not based on stochasticity, and is thus easier to interpret compared to MCTS agents or neural

networks. It is also possible to use the agent to validate the methodology with deterministic data since

the same action is always taken for a given state.

4.3. Genetic Programming for Learning Features

The implementation of our tree-based genetic programming algorithm is based on [20, 21]. To initialize

the population, we randomly select trees and specify their return type. Then, we recursively sample

their subtrees for each parameter. To perform a mutation, we randomly select a node and a tree and

sample a new subtree for the node’s return type. A one-point crossover is implemented, merging one

tree with a random sub-tree of another tree that has the same return type. Tournament selection is used

to select two candidates for crossover or one candidate for mutation from the population. For more

details on the genetic programming algorithm, please refer to [20].

The fitness function maximizes the number of times features appear in the set of provided states 𝑆:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =

{︃∑︀
𝑠∈𝑆 𝜌(𝑠)

|𝑆| , if 𝜌 /∈ 𝐷𝐹

0, otherwise

(1)

where 𝜌 is the currently evolved feature program, which returns 1 if the feature is activated and 0 if

the feature is not activated. We also use a regularizer to prevent the trees from growing too large. We



Algorithm 1 Overview of the whole approach.

1: procedure GetDecisionTree(𝑆, 𝑌𝑎, 𝐷𝐹 )

2: 𝑋 ← ∅
3: for all 𝑠 ∈ 𝑆 do
4: 𝑋𝑠 ← ∅ ◁ set of all program activations for a single state

5: for all 𝜌 ∈ 𝐷𝐹 do
6: 𝑋𝜌 ← 𝜌(𝑠) ◁ returns a program activation after execution

7: 𝑋𝑠←X𝑠 ∪𝑋𝜌

8: end for
9: 𝑋 ←X ∪𝑋𝑠

10: end for
11: return FitDecisionTree(𝑋,𝑌𝑎)

12: end procedure
13:

14: procedure GetExplanations(𝑆, 𝑌𝑎, 𝑔, 𝑡)
15: 𝐷𝐹 ← GeneticProgramming(𝑆, 𝑔, 𝑡)
16: 𝑇𝐷𝐹

← GetDecisionTree(S, Y𝑎, 𝐷𝐹 )

17: 𝜑← GetFeatureImportances(T𝐷𝐹
),

∑︀𝑛
𝑖=1 𝜑𝑖 = 1

18: 𝐷𝐹 ← FilterProgramsByImportance(𝐷𝐹 , 𝜑) , 𝐷𝐹 ⊆ 𝐷𝐹 ◁ 𝜑𝑖 > 0
19: 𝑇𝐷𝐹

← GetDecisionTree(S, Y𝑎, 𝐷𝐹 )

20: 𝜌← GetDecisionPath(T𝐷𝐹
, 𝑆), 𝜌 ⊆ 𝐷𝐹

21: return GetNaturalLanguageExplanations(𝜌) ◁ explanations

22: end procedure

implement a feature program database 𝐷𝐹 that stores the features with the highest fitness every 𝑡 = 50
generations for a total of 𝑔 generations. This results in |𝐷𝐹 | = 𝑔

𝑡 feature programs in 𝐷𝐹 .

If an evolved feature program is already present in the feature database, then we always return 0

as the fitness. This ensures that these features will most likely not be selected for further evolution.

We evolve the same population after saving the best features in the feature database so that we do not

have to re-initialize the population. This allows the GP algorithm to run like an open-ended evolution,

adding new features throughout all iterations. This is also possible thanks to the probabilistic grammar,

which defines programs through recursion.

A drawback of counting how often features occur in the states is that programs such as

(get-board-feature $1 (get $1 (cell 1 0)) (get-game-piece (get $1 (cell 1
0)))) have maximum fitness because they compare the same cell. However, these programs do not

contain any information for the decision-making process and are therefore filtered out in the next step.

4.4. From Features To Explanations

After collecting features for a predetermined number of generations 𝑡, we run all feature programs 𝐷𝐹

on the given states. Next, we train a decision tree 𝑇𝐷𝐹
using a standard stochastic greedy decision tree

learner [22] that maps the output of the feature programs to the corresponding actions 𝑌𝑎 for each state

in 𝑆. This decision tree represents the hierarchical structure of how features are connected. When we

calculate the feature importance 𝜑, i.e., the Gini importance, it becomes clear that only a small subset of

the found features 𝐷𝐹 ⊆ 𝐷𝐹 is actually used to map the activated features to the actions. Therefore,

when training the decision tree, we filter the features and keep only those with an importance of 𝜑 > 0.

We train a second decision tree 𝑇𝐷𝐹
on the subset of 𝐷𝐹 , to have a concise mapping of the nodes in

the decision tree and the programs in 𝐷𝐹 , since only the best subset 𝐷𝐹 of previously found programs

is used.

We use the collected states as input to create post-hoc explanations and traverse the decision paths 𝜌,

with 𝜌 ⊆ 𝐷𝐹 of the decision tree to make the activated or non-activated feature programs visible. The



Table 2
We show the feature programs which were responsible for the decision making process of the agent for two
game states. We also provide text explanations in natural language generated by GPT-4o and show whether the
feature program was activated. In the upper example, the decision-making process checks if two game pieces of
player X are in the first column and the first and second row. If this is the case, it will check if the third row of
the first column is empty and if this is the case, the player plays the piece on this position (indicated by the gray
X). In the next example, the branching of the decision path after the second program is visible. In both examples,
the first two programs are checked, but as the second program is not activated for the second game state, other
programs are checked afterwards. Instead of checking if the game can be won with completing the first column,
the programs will check if the first row can be completed.

Feature Program Natural Language Expla-
nation

Activated?State

(get-board-feature $1 (get $1 (cell 0
0)) Player)

Is (0,0) the player’s piece? Yes

(get-board-feature $1 (get $1 (cell 1
0))(if (eq-obj? (get $1 (cell 1 0))
Empty) Empty Enemy ))

Is (1,0) occupied by enemy
or empty?

No

(get-board-feature $1 (get $1 (if
(eq-obj? (get $1 (cell 2 0))
Enemy)(cell 1 0)(cell 2 0))) Empty)

If (2,0) is occupied by en-
emy, check if (1,0) is empty.
Otherwise check if (2,0) is
empty?

Yes

(get-board-feature $1 (get $1 (cell 0
0 )) Player )

Is (0,0) the player’s piece? Yes

(get-board-feature $1 (get $1 (cell 1
0))(if (eq-obj? (get $1 (cell 1 0))
Empty) Empty Enemy ))

Is (1,0) occupied by enemy
or empty?

Yes

(get-board-feature $1 (get $1 (cell 1
2))(if (eq-obj? (get $1 (cell 0 2))
Empty ) Empty (get-game-piece (get $1
(cell 1 2)))))

If (0,2) is empty, treat (1,2) as
Empty. Is (0,2) not empty?

Yes

(get-board-feature $1 (get $1 (if
(eq-obj? (get $1 (cell 0 1))
Empty)(cell 0 1)(cell 2 1))) Empty)

Is (0,1) empty? If not, is (2,1)
empty? (checks if either is)

No

(get-board-feature $1 (get $1 (cell 0
2)) Empty)

Is (0,2) empty? Yes

pseudo code of this procedure is given in Algorithm 1.

The following case studies provide examples of these types of explanations. Natural language

explanations for these programs are afterwards created by GPT-4o [23].

5. Results & Discussion

5.1. Case Study: Tic-Tac-Toe Explanations

To demonstrate the effectiveness of the proposed approach, we selected Tic-Tac-Toe as the test environ-

ment because the simple game logic enables us to easily interpret the actions chosen by the minimax

agent. When two minimax agents play against each other, the game always ends in a tie. Therefore, we

collected data by having a random agent play against the minimax agent. In total, both agents played

100 games, which resulted in 319 state-action pairs. We only collected data after the minimax agent

made a move with the X symbol because we only wanted to explain the minimax agent’s decisions.



Next, we ran the genetic programming (GP) algorithm on the states for 𝑔 = 50, 000 generations,

maintaining a population size of 200 and a tournament selection size of 20. Every 𝑡 = 50 generations,

the best feature program in the population was saved in the feature database. After the GP algorithm is

completed, there are a total of |𝐷𝐹 | = 1000 feature programs in the database. After filtering the features

by the calculated feature importance score of the decision tree, only |𝐷𝐹 | = 21 feature programs remain

for explaining the decision-making process. Table 2 shows examples of the reasoning process, and

provides an explanation of the programs in natural language, as well as a short concise description of

the reasoning process in the caption.

5.2. Case Study: Connect 4

We also ran experiments on the game Connect 4. The data collection process is similar to that of Tic-
Tac-Toe. However, we do not let a minimax agent play against a random agent, as most games end after

the minimax agent has played four pieces. We let two minimax agents with different search depths play

against each other in order to collect data which resulted in 439 state-action pairs. For the GP algorithm,

we used 𝑔 = 100, 000 generations, maintaining the same population and tournament size throughout.

This resulted in |𝐷𝐹 | = 2000 feature programs. After training the decision tree and filtering the

programs by Gini importance, only |𝐷𝐹 | = 379 remained. We created post hoc explanations for a few

example states, but the decision tree and path were too large and incomprehensible. Upon examining

the important features, we noticed that many of them only considered one or two cells, which was

sufficient for Tic-Tac-Toe since the game’s complexity is much smaller. We identified multiple key issues

that need improvement for learning features with genetic programming:

• Currently, the fitness function only counts how often a feature appears in states. To reduce the

number of necessary features, the number of cells the feature looks at should also be maximized.

• The DSL should be adapted to include more high-level functions that are also plausible from a

cognitive science viewpoint, such as counting pieces.

• Including the game rules in the DSL, could also lead to better features and runtime.

6. Conclusion

In this work, we introduced an approach and showed preliminary results for creating cognitive-plausible

explanations of board game agents. Our approach is based on visual routines [5] and has a hierarchical,

pattern-based structure that resembles a more human-intuitive way of playing games [3, 4], which we

also discussed for sufficiency and necessity. We showed the branching of a decision path for explanations

of two collected state-action pairs in the game Tic-Tac-Toe and outlined how to scale the approach to

more complex games.
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