
Procedural Level Generation via Program Inversion
Harper Noteboom1,†, Kalyani Nair1,† and Seth Cooper2

1Pomona College
2Northeastern University

Abstract
Procedurally generating levels for games often involves writing custom algorithms or providing large amounts
of levels to learn from. In this work, we explore an approach to general video game level generation using
a game’s source program along with a single level, based on the concept of program inversion. Given the
forward program for a game, we produce an inverted program in the same language that essentially runs the
game backward. Starting from a solved level (which can be found searching with the forward program on a
level), the inverted program can be run to generate variations on the level. We look at simple games written
in a domain-specific rewrite-based language for describing tile- and turn-based games, where a single player
repeatedly makes deterministic choices until they win. We verify that the level variations created by the inverted
program can be solved by the original forward program.

Keywords
procedural content generation, program inversion, rewrite rules

1. Introduction

Procedural content generation (PCG) for creating game content, such as game levels, has become
increasingly popular [1]. There are a wide variety of approaches to PCG, with claimed benefits such as
various kinds of replayability and tailoring content to players [2].

However, the majority of PCG techniques require a fair amount of additional work above and beyond
the work needed to create a game in the first place. “Classical” rule-, search- and constraint-based
approaches require writing custom code just for generating content (e.g., a grammar, a fitness function,
or constraints). More recent machine learning and “generative AI” [3] approaches often require large
amounts of training data, potentially defeating the purpose of generating content in the first place [4].
If the content being generated is game levels, it is important for them to be completable and solvable by
the player, and it is not uncommon to also apply a game-playing agent for testing content (e.g., [5, 6]).

With the goal of reducing the amount of additional work needed to generate content for a game, in
this work we explore an approach to generating content for a game based on things a designer would
need to create for the game anyway: the game’s source code, along with at least one level. This can
be considered general video game level generation [7]: generating levels for a whole class of games
implemented in description language. Our approach is based on the concept of program inversion:
the game’s source code is inverted to create a new program, in the original description language, that
undoes player moves in the game. The inverted program can then be run on a solved level to generate
new starting levels that we know can be solved by the original program. We call this concept procedural
level generation via program inversion.

In this work we take an initial step in this direction. We use programs written in a small variant of
the domain-specific language Tile Rewrite Rule Behavior Trees (TRRBTs) [8]. In this language, 2D grids
of tiles, called boards, are used to represent starting levels as well as the current game configuration,
and the logic of a game’s program is represented using a behavior-tree like structure, called a tree. Leaf

Joint AIIDE Workshop on Experimental Artificial Intelligence in Games and Intelligent Narrative Technologies, November 10-11,
2025, Edmonton, Canada.
†
These authors contributed equally.
$ hjnf2022@mymail.pomona.edu (H. Noteboom); ksne2023@mymail.pomona.edu (K. Nair); se.cooper@northeastern.edu
(S. Cooper)
� 0000-0003-4504-0877 (S. Cooper)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-12

mailto:hjnf2022@mymail.pomona.edu
mailto:ksne2023@mymail.pomona.edu
mailto:se.cooper@northeastern.edu
https://orcid.org/0000-0003-4504-0877
https://creativecommons.org/licenses/by/4.0/deed.en

nodes of the tree can change the board by rewriting one pattern of tiles (the left-hand side) with another
(the right-hand side), or check for the existence of a pattern of tiles on the board by matching it. We
chose this language as inverting the changes to board configuration based on rewrites is straightforward:
swap the left and right hand sides of the rule. Additionally, the modularity of the language allows us to
limit the structure of supported games, and we do not use the full range of tree and node structures
that TRRBTs can support. We limit to games with a simple tree structure: those where a single player
repeatedly makes a choice with deterministic consequences until they win.

To generate levels for a game, given the game’s TRRBT code tree and a board, we use the tree to
solve the board (if needed — an already solved board can be provided), then invert the tree and run the
inverted tree on the solved board to generate new boards. These boards are variations on the original
board. These variations maintain certain features from the initial input board as there are elements of
the boards that cannot be changed by rewrites (e.g., walls or the dimensions of the board). However,
this approach is effective in generating interesting and solvable level variations. While the result of a
program inversion with one starting board will have some underlying constants between all levels, these
level variations have advantages from requiring many more steps to solve to having more interactive
pieces on the board, depending on the game.

We present the program inversion approach we used for TRRBTs having this structure, and imple-
mented four games: Peg Solitaire (jumping pegs to remove them), Merge (merging neighboring numbers
into higher numbers), Sokoban (pushing crates onto targets), and TwoDoor (a simple lock-and-key dun-
geon). We show empirically that the inverted trees only generate solvable boards, by enumerating them
and checking their solvability. We also show that generating boards using an inverted tree compares
favorably to a similar approach using only the original (forward) tree.

This work contributes the general concept of program inversion as an approach to generating content
for games from a game’s source code, as well as an exploration of this concept in a domain-specific
language, generating levels across several games.

2. Related Work

Procedural Content Generation. A variety of approaches have been developed for procedural content
in games [1]. These range from “classic” techniques, such as constructive- or rule- based (e.g., [9, 10]),
to search-based (e.g., [11, 12]), and constraint-based (e.g., [13, 14]) methods. Such approaches generally
require implementing a generator in addition to implementing the game itself.

Recently, machine learning approaches that can learn from example content have been developed in
the area of PCGML [3], as well as “generative AI” [15]. Such approaches can require large amounts of data
for training or pre-training, and may not guarantee solvability of generated levels (sometimes relying on
an agent test or repair step). Some learning approaches, however, can learn from a single example level
(e.g., WaveFunctionCollapse [16] or Sturgeon [17]). These approaches could thus potentially require
only the game’s code and an example level to work, as they could learn to generate levels from the
example level, and then use the code to check solvability, in a generate-and test framework. Comparing
that to our program inversion approach would be interesting future work.

In this work we enumerate all the possible boards found by the inverted tree. This is essentially a
form of Exhaustive PCG [18]; however, we do this mainly to confirm the levels’ solvability. Some work
has looked at interactively visualizing and filtering such large datasets of generated levels [19].
General Video Game Level Generation and Game DSLs. A number of domain-specific languages
have been developed over the years for describing both board and video games, such as Ludii [20], Game
Description Language [21], Video Game Description Language [22], Ceptre [23], and PuzzleScript [24].
Some have been used as targets for general video game level generation: that is, given a game’s code in
some description language along with a player agent, generate levels for the game [7].

One approach in this area approached generating levels for games written in VGDL by translating it
into Answer Set Programming [25]. This approach also applied an evolutionary process with agents
verifying that levels are solvable. Other work developed a framework for evaluating general VGDL

Program:forward loop-until-all

win:1 player:1

match-times:T

END

rewrite

LEFT1 → RIGHT1

rewrite

LEFT2 → RIGHT2 . . .
rewrite

LEFTN → RIGHTN

Program:inverted loop-until-all

player:1 lose:1

rewrite

RIGHTN → LEFTN

rewrite

RIGHTN-1 → LEFTN-1 . . .
rewrite

RIGHT1 → LEFT1

match-times:T

END

Figure 1: Generic approach to TRRBT program inversion. Forward tree on the left and inverted tree on the right.

level generators [7]. VGDL has also been used for evaluating general level generators [26].
PuzzleScript has also been a target for general level generation. For example, one approach has used

constructive and search based techniques based on an analysis of a game’s rules [27]. While most prior
work in general video game level generation creates levels, our work aims to create a level generator in
the original language. Notably, earlier work in TRRBTs [8] generated randomly shuffled levels using
the player’s moves from within the tree, but only if the individual moves themselves were reversible.
Game Mechanic Inversion. Some previous work has looked at inverting moves or mechanics in
specific games as a way to ensure the solvability of generated levels. This is a not uncommon approach
to generating Sokoban [28] levels, by letting the character pull rather than push crates from a solved
configuration (e.g., [29, 30, 31]), as well as similar specific games. A similar approach, that of undoing
moves, has also been applied to generating Sudoku number puzzles [32]. Some work on Sokoban has
also looked at using reversed moves to solve puzzles, starting from the solution and searching backwards
to the start [33]. While usually these works look at specific games, we are looking at a more general
technique for a whole category of games.
Program Inversion. The general concept of program inversion [34], roughly speaking, is to derive a
program that does the opposite of some given program, mapping outputs back to inputs. A number of
approaches to program inversion focus on theoretical proofs of the correctness of the inversion [35], for
example of tree traversals [36, 37] or certain types of matrix multiplication [38]. The program inversion
concept is promising for programs that naturally pair in this way, such as compression/decompression
programs [39].

In some cases a non-deterministic mapping from outputs back to inputs may be acceptable [40] or
even desirable. A similar approach to ours, for example, has been used to generate TIFF images for
testing implementations of image clients [41]. They use a normalization program to create a normalized
representation of an image, and then invert that program and use the inverse program to generate test
images. This can be seen as analogous to our approach of using the original (forward) program to solve
a level and then the inverse program to generate new levels from that.

3. System Overview

Here we describe the approach we take to generating levels based on a game’s source code.
Game Representation. Our inversion method for level generation uses Tile Rewrite Rule Behavior
Trees (TRRBTs) as the underlying game representation [8], although we only support a very specific
type of game, and not the full range of games that TRRBTs allow. Games consist of a board and a tree.

The board is a 2D array of tiles — strings of characters — that represent the current configuration of
a game. A board can have multiple named layers of tiles that are stacked on top of each other. This
makes it easier for something like foreground tiles to move over background tiles (e.g. pushing crates
over targets in Sokoban, discussed below). Terminology-wise, “board” can be considered the term for a
“level” in TRRBTs. A layered 2D array of tiles that does not represent the game board is also called a
pattern. A board can also have a result associated with it, either win or lose if the game has ended in
one of those outcomes, stalemate if the game has ended without an explicit outcome, or nil if the game
is still running.

The tree determines the logic of the game and makes changes to the board. The tree is run as a
behavior tree, with nodes succeeding or failing based on specific conditions for their node type, and

Peg Solitaire:forward loop-until-all

win:1 player:1

match-times:1

O

rewrite

O O _ → _ _ O

rewrite

O
O
_
→

_
_
O

rewrite

_ O O → O _ _

rewrite

_
O
O
→

O
_
_

Peg Solitaire:inverted loop-until-all

player:1 lose:1

rewrite

O
_
_
→

_
O
O

rewrite

O _ _ → _ O O

rewrite

_
_
O
→

O
O
_

rewrite

_ _ O → O O _

match-times:1

O

Figure 2: Inversion of tree for Peg Solitaire. Forward tree on the left and inverted tree on the right.

Merge:forward loop-until-all

win:1 player:1

match-times:1

5

rewrite

1 1 → _ 2

rewrite

2 2 → _ 3

rewrite

3 3 → _ 4

rewrite

4 4 → _ 5 . . .

Sokoban:forward loop-until-all

win:1 player:1

match-times:0
-main-

O
-trgt-

_

rewrite

P _ → _ P

rewrite

P O _ → _ P O . . .

TwoDoor:forward loop-until-all

win:1 player:1

match-times:1

W

rewrite

P_ _ → _ P_

rewrite

P_ a → _ Pa

rewrite

P_ b → _ Pb

rewrite

P_ @ → _ W

rewrite

Pa _ → _ Pa

rewrite

. X
Pa A
. X

→
. X
_ P_
. X

rewrite

Pb _ → _ Pb

rewrite

. X
Pb B
. X

→
. X
_ P_
. X

. . .

Figure 3: Forward trees for other games used. For space, rewrite nodes that are rotations of others are omitted.

returning that information to their parent node, which adjusts its behavior based on its children.
Both a board and a tree are required for a game to be played. Although in previous work boards were

included directly in the tree through a set-board node, in our method, we separated the board from the
tree so that we could more easily invert the tree and and allow for different starting boards to be passed
into the same tree.
Supported Tree Structure and Inversion. In this work we use only a few node types and require
them to be in a particular arrangement. The node types are:

• loop-until-all: Iteratively runs children in order until all children fail on one iteration. Succeeds if
any child succeeds, otherwise fails.

• win and lose: Runs children in order. If any child succeeds, immediately ends the game with the
respective result for its associated player; otherwise fails.

• player : All children of a player node must be rewrite nodes. If any LEFT pattern of a child is
present in the current board, the player can chose one LEFT to be replace with its associated
RIGHT and the player node succeeds. Fails if there are no LEFT patterns present.

• rewrite: Contain the rewrites, where the associated LEFT can be replaced with the associated
RIGHT. In this work, these are always the child of a player node and so not run directly.

• match-times: Succeeds if its pattern is present in the current board its associated number of times,
otherwise fails.

Our program inversion approach takes a tree representing a game’s (forward) logic as an input. These
trees are required to fit the specific tree structure shown in Figure 1(left). This structure essentially
represents a game loop that alternates checking for a win and the player making a move. The root
is a loop-until-all node with two children. The first child of this loop is a win node that has a child
match-times node that succeeds if a pattern END is matched on the board T times. The second child of
loop-until-all is required to be the player node with a series of N rewrite nodes with patterns LEFTi
and RIGHTi, 1 ≤ i ≤ N as children. Note that in this structure, checking for a win before the player
moves allows starting from a board that is already solved.

Inverted-Enumerate
In: 𝑡𝑟𝑒𝑒: (forward) game tree

𝑏𝑜𝑎𝑟𝑑: starting board
Out: 𝑏𝑜𝑎𝑟𝑑𝑠𝐺𝑒𝑛: generated boards
𝑏𝑜𝑎𝑟𝑑𝑆𝑜𝑙𝑣𝑒𝑑← 𝑠𝑜𝑙𝑣𝑒(𝑝𝑟𝑜𝑔𝑟𝑎𝑚, 𝑏𝑜𝑎𝑟𝑑)
𝑡𝑟𝑒𝑒𝐼𝑛𝑣 ← 𝑖𝑛𝑣𝑒𝑟𝑡(𝑡𝑟𝑒𝑒)
𝑏𝑜𝑎𝑟𝑑𝑠𝐸𝑛𝑢𝑚← 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑡𝑟𝑒𝑒𝐼𝑛𝑣, 𝑏𝑜𝑎𝑟𝑑𝑆𝑜𝑙𝑣𝑒𝑑)
𝑏𝑜𝑎𝑟𝑑𝑠𝐺𝑒𝑛← {𝑏 ∈ 𝑏𝑜𝑎𝑟𝑑𝑠𝐸𝑛𝑢𝑚 | 𝑏𝑠𝑡𝑒𝑝𝑠 > 0 ∧ 𝑏𝑟𝑒𝑠𝑢𝑙𝑡 ∈ {𝑛𝑖𝑙, 𝑠𝑡𝑎𝑙𝑒𝑚𝑎𝑡𝑒}}
foreach 𝑏 ∈ 𝑏𝑜𝑎𝑟𝑑𝑠𝐺𝑒𝑛:

𝑎𝑠𝑠𝑒𝑟𝑡(𝑠𝑜𝑙𝑣𝑒(𝑡𝑟𝑒𝑒, 𝑏) ̸= 𝑛𝑖𝑙)
end

Algorithm 1: Inverting tree and inversely enumerating boards

Forward-Enumerate
In: 𝑡𝑟𝑒𝑒: (forward) game tree

𝑏𝑜𝑎𝑟𝑑: starting board
Out: 𝑏𝑜𝑎𝑟𝑑𝑠𝐺𝑒𝑛: generated boards
𝑏𝑜𝑎𝑟𝑑𝑠𝐸𝑛𝑢𝑚← 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑡𝑟𝑒𝑒, 𝑏𝑜𝑎𝑟𝑑)
𝑏𝑜𝑎𝑟𝑑𝑠𝐺𝑒𝑛← {𝑏 ∈ 𝑏𝑜𝑎𝑟𝑑𝑠𝐸𝑛𝑢𝑚 | 𝑏𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑛𝑖𝑙 ∧ 𝑠𝑜𝑙𝑣𝑒(𝑡𝑟𝑒𝑒, 𝑏𝑜𝑎𝑟𝑑) ̸= 𝑛𝑖𝑙}

Algorithm 2: Forward enumerating boards

The inverted version of such a tree is shown in Figure 1(right). The root remains a loop-until-all node,
with the order of the children reversed. First is the player node, with the order of its rewrite children
reversed, and the sides if these individual rewrite nodes reversed, and so that RIGHTi is on the left
and LEFTi is on the right. This allows individual rewrites to be done backward. Second is a lose node,
taking the place of the win node and its match-times child and associated END. A lose node is used so
that the inverted game won’t output a board that is already winning. Note that here losing is checked
for after making a move, as the inverted tree presumes that it is starting from a board that won from
the forward tree.

The resulting inverted tree can be run on a solved board, and each board that would be presented to
the player will be a solvable starting board for the game. This can be used to generate new levels that
are variations on the same underlying level structure.

4. Evaluation

Here we describe evaluations of the program inversion approach. Game trees and enumerated boards
from the evaluation can be found at https://osf.io/er5wh/.
Inverted Enumeration of Boards. To empirically verify that the inverted trees generate only boards
that can be solved, and to gather descriptive information on the generated boards, we enumerate all
boards that are produced by an inverted tree, starting from a solved board.

The overall approach is shown in Algorithm 1. It starts by taking the (forward) tree for a game in
the structure described above and a solvable starting board for the game. The function solve runs a
breath-first search with the forward tree until it reaches a solved board that wins the game; this also
associates the number of steps it took to solve with the board. Then invert produces the inverted tree
as described above. Next, enumerate finds all boards reachable by the inverted tree, starting from the
solved board; each enumerated board also gets associated with the number of steps it took to reach.
From these enumerated boards, we keep only those that took at least one step to reach (so they are not
the solved board from which inverted enumeration began) and either have not ended or ended in a
stalemate. These enumerated boards are checked by asserting that it is possible to win each of then
using the forward tree.

We applied this approach to four games:

https://osf.io/er5wh/

Generated Board Tile Logo
Game Initial Board with Longest Solution (Main Layer)

Pe
g
So
lit
ai
re . . _ . .

. _ _ _ .
_ _ O _ _
. _ _ _ .
. . _ . .

. . O . .

. _ O _ .
_ O O _ O
. _ O _ .
. . O . .

. . O . .

. _ _ _ .
O O O O O
. _ O _ .
. . _ . .

. . _ O . .

. _ O _ _ .
_ O O _ O _ O _ _ O
. _ O _ _ .
. . _ O . .

M
er
ge

5 _ _
_ _ _
_ _ _

3 3 2
1 1 1
1 1 1

3 2 2
2 2 1
1 1 1

3 4 2
3

1
_
4

_
2

1
3

2
3

1
_
4

1
2

_
3

_
1 2

_
2

1
3

_
1 2 _ 1

So
ko
ba
n

. _ _ _ _ _ . .
_ _ _ _ _ _ _ .
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
_ _ _ _ _ * * _
. . . . _ _ _ _

. X X X X X . .
X X _ _ X X X .
X P _ _ O _ X X
X _ X _ X _ _ X
X _ _ O _ _ _ X
X X X X X _ _ X
. . . . X X X X

. _ _ _ _ _ . .
_ _ _ _ _ _ _ .
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
_ _ _ _ _ * * _
. . . . _ _ _ _

. X X X X X . .
X X P _ X X X .
X _ O _ _ _ X X
X _ X O X _ _ X
X _ _ _ _ _ _ X
X X X X X _ _ X
. . . . X X X X

. _ _ _ _ _ . .
_ _ _ _ _ _ _ .
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
_ _ _ _ _ * * _
. . . . _ _ _ _

. X X X X X . .
X X P _ X X X .
X _ O O _ _ X X
X _ X _ X _ _ X
X _ _ _ _ _ _ X
X X X X X _ _ X
. . . . X X X X

. X X X X X . .
X X _ P _ P X X X .
X _ P _ O

P _ O
P _ O

P
_ P X X

X _ P X _ O
P
X _ O

P
_ P X

X _ P _ O
P _ O

P _ O
P
_ O

P
_ O

P
X

X X X X X _ O
P
_ P X

. . . . X X X X

Tw
oD

oo
r X X X X X X X X X X

X P_ _ A _ b X _ @ X
X _ a X _ _ B _ _ X
X X X X X X X X X X

X X X X X X X X X X
X _ _ B P_ _ X _ @ X
X a _ X _ b A _ _ X
X X X X X X X X X X

X X X X X X X X X X
X _ _ A b _ X _ @ X
X _ _ X _ P_ B a _ X
X X X X X X X X X X

X X X X X X X X X X
X _

a
b

P_ Pa
Pb
_

P_

a b
Pa Pb

A
B

_
P_
a
b

Pa
Pb

_
P_

a
b
Pa Pb

_
a

b
P_
Pa Pb
X _

a
b
P_
Pa Pb
@ X

X _
a
b

P_ Pa
Pb
_
a
b

P_ Pa
Pb
X _

a

b
P_
Pa Pb

_
P_

a
b
Pa Pb

A
B

_
P_

a b
Pa Pb

_
a
b
P_
Pa Pb
_

a
b
P_
Pa Pb
X

X X X X X X X X X X

Figure 4: Starting and selected generated boards from each game. The tile logo visualizes the proportions
(relative to the square root of the actual tile count) of different tiles at each location of the enumerated levels.

• Peg Solitaire: A game where the player jumps over and removes pegs O; the goal is to end up with
one peg left. The tree structure for Peg Solitaire can be seen in Figure 2; the match-times node
represents having one peg left, each rewrite represents jumping over and removing a peg. This
game used a solved starting board.

• Merge: The player can merge two neighboring tiles with the same number to create one tile with
a number one larger. The goal is to end up with one tile with the number 5. The tree can be seen
in Figure 3; each rewrite node represents the combining of neighboring tiles and the match-times
checks for a single tile with 5. This game used a solved starting board.

• Sokoban: Based on the puzzle game Sokoban [28], the player’s character P can push crates O
around the floor. The goal is to get all the creates onto target locations *. This game makes use of
TRRBT’s layers to have a separate layer for the targets under the main layer so the player and
crates can move over them. The use of layers can be seen in the tree for Sokoban in Figure 3;
the match-times node ensures there are no crates on the main layer that don’t line up with the
targets on the target layer.

• TwoDoor : The player’s character P_ can navigate a simple area with two keys, a and b, and two
doors, A and B. They can carry one key at a time, (e.g., Pa). Their goal is to reach the exit @; the
player can only go to the exit when not carrying a key. Notably in this game, the rewrite rule
to remove a door includes the neighboring walls, which thus requires the inverted tree to only
place doors between two walls (rather than anywhere on the board); thus the forward game tree
was partially written with the inverted tree in mind. The tree can be seen in Figure 3.

The forward and inverted trees for Peg Solitaire are shown in Figure 2, and the forward trees for the
other games are shown in Figure 3. Figure 4 shows the initial boards used for each game and selected
boards generated with the longest solutions, created with level2image. It also shows a “tile logo”
visualizing the proportions of different tiles at each location of the enumerated levels, created with Level
Explorer [19], which uses squarify’s [42] implementation of squarified treemaps [43]. A summary
description of the inverse enumerated boards is given in Table 1 under “Inverted”.
Comparison to Forward Enumeration of Boards. We considered it may also be informative to
compare the boards enumerated by the inverse tree to those enumerated by simply running the forward
tree from the starting board. This was done using Algorithm 2, which enumerated the boards using the

Inverted Forward
Gen. Board Avg. Soln. Max Soln. Gen. Board Avg. Soln. Max Soln.

Game Count Length Length Count Length Length
Peg Solitaire 38 3.632 6 0 — —

Merge 273 5.073 8 0 — —
Sokoban 820 26.280 57 315 20.959 42
Twodoor 1455 8.451 18 37 7.081 11

Table 1
Summary of enumerated boards using inverted and forward enumeration.

forward tree from the starting board, and keeps those that have not yet come to a result and can also be
solved. A summary description of the enumerated boards is given in Table 1 under “Forward”.

5. Discussion

Checking that all the boards enumerated by the inverted tree when starting from a solved board are
themselves solvable shows, empirically in the cases that were tried, that running the inverted tree will
always result in a solvable board that could thus be used in a game.

One potentially useful feature of the approach is that it works from a solved board or a starting board.
This provides flexibility, as a designer can either use a starting board (which they may already have
if they are working on a game) and get variations on that board, or start from a desired solution and
generate boards directly from that.

We also found that, in comparison to just forward enumeration from a solvable board, inverse
enumeration find more boards. When starting from a solved board there are, unsurprisingly, no new
boards to be found. But even in the games starting from unsolved boards, inverted enumeration is able
to find a larger number of boards with higher average and maximum solution lengths.

We also think, subjectively, inverse enumeration finds some interesting levels. For example, the
generated Sokoban boards appear to include the provided starting board as a step along the solution
path. The generated TwoDoor boards involve backtracking a bit after collecting a key: one to collect the
other key behind a door, and one just to use up a key in a door as the player can only exit without a key.

6. Conclusion

In this work we have presented the concept of program inversion for procedural content generation.
Although other work has applied inverted mechanics to content generation in specific games, we
show an implementation of that concept using a small version of the Tile Rewrite Rule Behavior Trees
domain-specific language that captures a class of simple games. This allows new boards to be generated
for these games directly from their source code and a single example board.

In the future we are interested in expanding the approach to larger, more complex games that use
more of the TRRBT language, or other other existing languages such as Ludii or PuzzleScript; also
developing approaches to generating levels based just on the game’s code without a provided starting
level. By creating a level generator in the same language as the original game, there is the possibility of
integrating the two and adding a runtime level generator back into the original game (perhaps as a
language feature in a TRRBT transform node). Since the inverted programs are themselves games, it
may be possible to play them to generate levels for the original game.

We would also like to perform a user study of game designers to see how useful this approach is
to them. We are also interested in methods to verify inversion works for generating solvable levels
theoretically rather than empirically. Finally, program inversion may be useful for generating other
types of content.

Acknowledgments

The authors would like to thank Chris Martens, Cynthia Li, and Kaylah Facey for their work on the
underlying TRRBT language and input on this work.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools in preparing this work.

References

[1] N. Shaker, J. Togelius, M. J. Nelson, Procedural Content Generation in Games, 2016.
[2] G. Smith, Understanding procedural content generation: a design-centric analysis of the role

of PCG in games, in: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2014, pp. 917–926.

[3] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover, A. Isaksen, A. Nealen,
J. Togelius, Procedural Content Generation via Machine Learning (PCGML), IEEE Transactions
on Games 10 (2018) 257–270.

[4] I. Karth, A. M. Smith, Addressing the fundamental tension of PCGML with discriminative learning,
in: Proceedings of the 14th International Conference on the Foundations of Digital Games, 2019.

[5] A. J. Summerville, S. Philip, M. Mateas, MCMCTS PCG 4 SMB: Monte Carlo tree search to guide
platformer level generation, AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (2015).

[6] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, S. Risi, Evolving Mario levels in the latent space
of a deep convolutional generative adversarial network, in: Proceedings of the Genetic and
Evolutionary Computation Conference, ACM, 2018, pp. 221–228.

[7] A. Khalifa, D. Perez-Liebana, S. M. Lucas, J. Togelius, General video game level generation, in:
Proceedings of the Genetic and Evolutionary Computation Conference 2016, 2016, pp. 253–259.

[8] J. Zhou, C. Martens, S. Cooper, Authoring games with tile rewrite rule behavior trees, in:
Proceedings of the 19th International Conference on the Foundations of Digital Games, 2024.

[9] J. Dormans, Adventures in level design: Generating missions and spaces for action adventure
games, in: Proceedings of the 2010 Workshop on Procedural Content Generation in Games, 2010.

[10] G. Smith, J. Whitehead, M. Mateas, M. Treanor, J. March, M. Cha, Launchpad: a rhythm-based
level generator for 2D platformers, IEEE Transactions on Computational Intelligence and AI in
Games 3 (2011) 1–16.

[11] B. M. F. Viana, L. T. Pereira, C. F. M. Toledo, S. R. dos Santos, S. M. D. M. Maia, Feasible–infeasible
two-population genetic algorithm to evolve dungeon levels with dependencies in barrier mechanics,
Applied Soft Computing 119 (2022) 108586.

[12] A. Alvarez, S. Dahlskog, J. Font, J. Holmberg, C. Nolasco, A. Österman, Fostering creativity in
the mixed-initiative evolutionary dungeon designer, in: Proceedings of the 13th International
Conference on the Foundations of Digital Games, 2018, pp. 1–8.

[13] M. J. Nelson, A. M. Smith, ASP with applications to mazes and levels, in: N. Shaker, J. Togelius,
M. J. Nelson (Eds.), Procedural Content Generation in Games, 2016, pp. 143–157.

[14] I. Karth, A. M. Smith, Wavefunctioncollapse is constraint solving in the wild, in: Proceedings of
the 12th International Conference on the Foundations of Digital Games, 2017, pp. 1–10.

[15] S. Sudhakaran, M. González-Duque, C. Glanois, M. Freiberger, E. Najarro, S. Risi, MarioGPT:
open-ended text2level generation through large language models, 2023. ArXiv:2302.05981 [cs].

[16] M. Gumin, Wavefunctioncollapse, https://github.com/mxgmn/WaveFunctionCollapse, 2016.
[17] S. Cooper, Sturgeon: tile-based procedural level generation via learned and designed constraints,

Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-
ment 18 (2022) 26–36.

https://github.com/mxgmn/WaveFunctionCollapse

[18] N. R. Sturtevant, M. J. Ota, Exhaustive and semi-exhaustive procedural content generation, AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment (2018).

[19] S. Cooper, F. Abutarab, E. Halina, N. Sturtevant, Visual exploration of tile level datasets, in:
Proceedings of the Experimental AI in Games Workshop, 2023.

[20] M. Stephenson, É. Piette, D. J. Soemers, C. Browne, An overview of the Ludii general game system,
in: 2019 IEEE Conference on Games (CoG), 2019, pp. 1–2. ISSN: 2325-4289.

[21] N. Love, T. Hinrichs, M. Genesereth, General game playing: Game Description Language specifica-
tion, Technical Report LG-2006-01, Stanford Logic Group, 2006.

[22] T. Schaul, A video game description language for model-based or interactive learning, in: 2013
IEEE Conference on Computational Inteligence in Games (CIG), 2013, pp. 1–8. ISSN: 2325-4289.

[23] C. Martens, A. Card, H. Crain, A. Khatri, Modeling game mechanics with Ceptre, IEEE Transactions
on Games 16 (2024) 431–444.

[24] S. Lavelle, Puzzlescript, https://www.puzzlescript.net/, 2013.
[25] X. Neufeld, S. Mostaghim, D. Perez-Liebana, Procedural level generation with answer set program-

ming for general video game playing, in: 2015 7th Computer Science and Electronic Engineering
Conference (CEEC), 2015, pp. 207–212.

[26] O. Drageset, M. H. M. Winands, R. D. Gaina, D. Perez-Liebana, Optimising level generators for
general video game AI, in: 2019 IEEE Conference on Games (CoG), 2019, pp. 1–8. ISSN: 2325-4289.

[27] A. Khalifa, M. Fayek, Automatic puzzle level generation: A general approach using a description
language, in: Computational Creativity and Games Workshop, 2015.

[28] Thinking Rabbit, Sokoban, 1982. Game.
[29] J. Taylor, I. Parberry, Procedural generation of Sokoban levels, in: Proceedings of the International

North American Conference on Intelligent Games and Simulation, 2011.
[30] K. Cho, Automatic level generation for puzzle games, https://abagames.github.io/

joys-of-small-game-development-en/procedural/puzzle_level.html, 2023. Accessed: 2025-
08-26.

[31] M. Brzozowski, Sokoban level generator, https://github.com/miki151/sokoban/, 2016. Accessed:
2025-08-26.

[32] T. Boothby, L. Svec, T. Zhang, Generating Sudoku puzzles as an inverse problem, Mathematical
contest in modeling (2008).

[33] F. W. Takes, Sokoban: Reversed Solving, Master’s thesis, Leiden Institute of Advanced Computer
Science (LIACS), Leiden University, 2008.

[34] E. W. Dijkstra, Program inversion, in: Selected Writings on Computing: A Personal Perspective,
1982, pp. 351–354.

[35] B. J. Ross, Running programs backwards: the logical inversion of imperative computation, Form.
Asp. Comput. 9 (1997) 331–348.

[36] W. Chen, J. T. Udding, Program inversion: more than fun!, Science of Computer Programming 15
(1990) 1–13.

[37] B. Schoenmakers, Inorder traversal of a binary heap and its inversion in optimal time and space,
in: R. S. Bird, C. C. Morgan, J. C. P. Woodcock (Eds.), Mathematics of Program Construction, 1993,
pp. 291–301.

[38] W. Chen, A formal approach to program inversion, in: Proceedings of the 1990 ACM annual
conference on Cooperation, 1990, pp. 398–403.

[39] S. Srivastava, S. Gulwani, S. Chaudhuri, J. S. Foster, Path-based inductive synthesis for program
inversion, in: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2011, pp. 492–503.

[40] D. Gries, J. v. d. Snepscheut, Inorder traversal of a binary tree and its inversion, The Formal
Development and Proofs, Addison-Wesley Publishing Company (1989).

[41] A. Kanade, R. Alur, S. Rajamani, G. Ramanlingam, Representation dependence testing using
program inversion, in: Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering, 2010, pp. 277–286.

[42] U. Laserson, squarify, https://github.com/laserson/squarify/, 2013. Accessed: 2025-08-20.

https://www.puzzlescript.net/
https://abagames.github.io/joys-of-small-game-development-en/procedural/puzzle_level.html
https://abagames.github.io/joys-of-small-game-development-en/procedural/puzzle_level.html
https://github.com/miki151/sokoban/
https://github.com/laserson/squarify/

[43] M. Bruls, K. Huizing, J. J. van Wijk, Squarified treemaps, in: W. C. de Leeuw, R. van Liere (Eds.),
Data Visualization 2000, 2000, pp. 33–42.

	1 Introduction
	2 Related Work
	3 System Overview
	4 Evaluation
	5 Discussion
	6 Conclusion

