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Abstract
Graph grammars are an approach to procedurally generating content for games. However, grammars must often
be carefully designed so that generated levels are completable, e.g. keys do not end up behind locks. In this
work, we present a graph grammar approach that uses a single unified grammar containing the rules for both
generating and playing levels. Such grammars generate not just a level, but an example playthrough of the level.
Using a constraint-based application of the grammars can ensure that generated playthrough solves the level.
The constraint-based approach is also highly controllable, and can constrain aspects such as the number of times
rules are applied, label counts in the generated graph, and matching partial subgraphs. To scale this approach up
to larger graphs, we introduce hints into the grammar rules that limit the ranges of variables that can be used
for certain nodes and edges. As a motivating example, we reproduce a grammar for generating adventure game
missions from Dormans’ previous work, extend it with gameplay rules, and use these for flexible item placement
while ensuring completability regarding keys and locks.
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1. Introduction

Graph grammars are a popular approach to procedural generation of levels for video games [1]. In
a graph grammar-based approach, levels are represented as graphs; the grammar provides rules for
replacing—or rewriting—certain subgraphs (i.e. arrangements of nodes and edges) with new subgraphs.
By repeatedly applying these rules, a graph (and thus level) of the desired complexity can be generated.

As is often the case with level generation, it is critical that levels generated by graph grammars
are completable—that is, it is possible for a player to complete the level. This means that, e.g. keys
should not be behind their associated locks, special items need to defeat a boss should be collectible
before getting to that boss, and so on. A number of techniques have been developed to ensure this,
including grammars that prevent such situations [2, 3, 4], generate-and-test [5], and constraint-based
approaches [6]. However, these previous approaches require either careful manual design of grammars,
or implementing a separate system to check or constrain graphs.

Recent work has explored representing the game mechanics themselves as rewrites of subgraphs,
essentially a graph grammar [7]. By using a constraint-based framework, this grammar representation
of the game mechanics could ensure that the generated graphs were completable. The level itself was
generated by constraints learned from example graphs [8], and simultaneously, the game mechanic
grammar generated a step-by-step playthrough demonstrating how the level could be completed. This
was done by creating a sequence of graphs, with each corresponding to an application of a mechanic
rule, and ensuring that the level is solved by the last step.

In this work, we look at unifying the graph grammar for generating levels and the graph grammar
for game mechanics into a single grammar. By unifying these into a single grammar, we can use the
previous constraint-based framework to generate graphs that are ensured to be playable in a single
constraint problem. We can also use the same representation to describe the rules for generating the
graph and ensuring that it is completable.
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For motivation, we looked to Dormans’ work on graph grammar generation of adventure game
missions [2], recreating it in our system, and augmenting it with mechanic rules. Our constraint-
based system allows fine-grained control over generated node labels, rule applications, and even entire
subgraphs. While the grammar in Dormans’ work was manually constructed to ensure that keys did
not end up behind their locks, our system allows flexibility in key and item placement by the generator
rules, while relying on the mechanic rules to ensure completability.

At it core, the system we present is an extension to the previous work [7] in which we include both
generator rules and mechanic rules, such that some steps in the graph sequence are generating the level
and some are of a playthrough ensuring its completability. However, in order to implement Dormans’
grammar, several pragmatic improvements to the system were needed. Perhaps the most important
of these was for performance, to scale up to larger graphs with more steps in their generation. We
call these grammar hints, which are additional information about the grammar and individual rules
to limit their application and thus the constraint problem to be solved. As one example, since the
performance of the constraint satisfaction problem is greatly impacted by the number of potential edges
in the graph, each grammar rule can have associated with it an edge hint: information about which
edges it is allowed to consider based on node IDs; e.g. instead of a rule having to consider any pair of
nodes being connected, it may only have to consider situations where the two nodes have relative ids
within a certain range, greatly reducing the space of possibilities. Whereas previous work [7] could set
such limitations across the entire graph—referred to as edge setup—in this work it can be set per-rule.
We have found grammar hints require additional effort to author, but greatly speed up the generation
process.

This work contributes a unified graph grammar approach to both generating levels and ensuring
their solvability using constraint solving, a demonstration of performance improvements provided by
grammar hints, and a demonstration of the controllability of generated graphs afforded by constraint
solving.

2. Related Work

Generating completable levels. To ensure that generated levels are completable, there are multiple
approaches that are commonly used. One common method is agent-based testing, in which completabil-
ity is assured by agents attempting to play the levels [9]. Another approach is to add constraints during
generation, so that levels always meet some requirements. For example, Nelson and Smith [10] used
answer set programming to encode rules about valid paths or item placement. Other systems like
Sturgeon combine the rules specified by the designer and learned pattern constraints to guarantee
reachability [6]. On the other hand, generate-and-repair techniques have a different approach, in which
they ensure completability after the generation process is complete. Autoencoders have been used to
automatically fix uncompletable structures by reconstructing levels [11]. More recent methods use
explainable AI to detect problematic regions and guide targeted repairs to minimally edit levels until
completability is achieved [12].
Generating levels with graph grammars. Graph grammars have been widely explored for level
generation. The early work of Adams [13] was one of the earliest works that used a graph grammar
(instead of phrase structure grammars) to generate FPS-style dungeons to utilize the power of graphs to
represent the complex patterns of connectivity that are found in levels. Following this work, Dormans
[2] viewed level design as a sequence of model transformations, and created mission grammars (that
included players’ missions and tasks) that get mapped to space graphs (that included spatial layout of
levels). Font et al. [4] created a two-stage evolutionary method in which a high-level graph of areas is
first evolved, and then expanded into detailed room graphs. They created examples of lock-and-key
puzzles that were guaranteed to be completable. Londoño and Missura [14] introduced stochastic graph
grammars to learn structural properties from Super Mario Bros levels and generate new levels with
similar qualities to expert design. Later review works on graph grammars highlighted that grammars
naturally capture high-level structural design patterns [15] and explored expansive examples of level
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Figure 1: On the left, rules for generating comparison graphs, with edge hints shown on edges; each node
and edge has both the left- and right-hand side of the rewrite. On the right, steps created as the generation a
comparison graph.

structures and quest generation [16]. Other work has looked at using graph grammars to generate
puzzles in educational games [17]. The sophisticated LudoScope level generation system [18, 19] allows
a great degree of control over levels generated by graph grammars, for example recipes that can specify
the number of times to apply a rule.

3. System Overview

For the most part, the core graph grammar system used in this work is similar to that presented in
previous work [7], except that some rules conceptually represent graph generation and some represent
gameplay mechanics. We briefly describe the previous system, in which rules represented only gameplay
mechanics, and were used to ensure that a generated graph could be completed by those mechanics by
generating a playthrough. The rules could rewrite the labels on subgraphs: at each step, a subgraph
matching the labels on the left-hand side of the rules could be rewritten as the labels on the right-hand
side; each node and edge has a static label, which cannot change from step to step, and a dynamic label,
which can change from step to step. Visually, each rule is represented as a graph with the left- and right-
hand side labels on each node and edge. These rules are incorporated into a constraint satisfaction
problem that creates a sequence of graphs, each representing a step in the solution. Roughly speaking,
the constraint problem is set up with a (Boolean) variable for each possible label for each possible node
and edge, and for dynamic labels, these are for every step. The graphs in the sequence are constrained
such that the labels can only change according to the mechanic rules, and the final graph is constrained
to be solved; thus, the created sequence of graphs show how the initial graph can be solved by the
mechanics as a playthrough. The problem setup must also be provided with a maximum graph size (in
terms of nodes) and maximum number of steps, although steps can be marked as terminal, after which
no more changes are made.

As the constraint problem is essentially solving for a label for each node and edge in each timestep,
practical considerations about the number of edges that need to be considered can impact performance,
as this number grows rapidly as the number of nodes increases. Previously, the number of edges was



reduced by an approach called the edge setup. Each node has an ID, from 1...𝑁 , where 𝑁 is the maximum
number of nodes in the generated graph. The edge setup globally limited which pairs of nodes could
potentially have an edge between them based on ID. Though this is configurable, a straightforward
edge setup simply only allows edges from a node ID 𝑖 to nodes up to ID 𝑖+ 𝑛.

Here now we describe some of the most salient changes from the previous system, updated for this
work. As an illustration, we refer to Figure 1, which shows a small set of generator rules and a resulting
graph sequence generated by them. In this simple example, the steps only generate a graph in the final
step and do not create a playthrough (we use the term graph sequence in general as the steps may be part
of generating the graph or part of the playthrough). On the right, there are two generator rules: one
that replaces the S node with two others, and then another rule that replaces those two with several
other nodes. Constraints are added such that final graph must not have any S, X1 or X2 nodes. On the
left the resulting generated graph sequence is shown. Note that the output of the solver is not just the
graph from the last step, but the entire sequence of graphs at once.

• Labels. In this work we introduced two special labels: the nil label NIL (shown in figures as ∙),
which means that a node or edge is not present, and the start label, S, which represents the start
node. To use the existing system, which learned from example training graphs to create the initial
graph (the graph in step 0), an example training graph is supplied with a single S node connected
to a single NIL node by a NIL edge. The initial graph is constrained to have a single S node, with
the rest of the nodes and all edges labeled NIL. Only dynamic labels, that can change from step
to step, are used—static labels, though present from the previous system, are set to a fixed value
and ignored. So, for example, the first rule in the top-left of Figure 1 can rewrite a S node, along
with a non-present NIL edge to a non-present NIL node (the left-hand side of the rule), with a
node labeled X1 to a node labeled X2 by and edge labeled labeled _ (the right-hand side of the
rule). This happens in the generated graph sequence in step 2.

• Edge hints. Edge hints can be used to specify on a per-rule basis information about which node
IDs should be considered for an edge to connect. These can be relative, meaning they are deltas
to the source node ID (shown in figures as +𝑛), or absolute, meaning only a specific node ID can
be considered (shown in figures as @𝑛). For example, in the first rule in the top-left of Figure 1,
the +7 . . .+ 9 means that ID of the node rewritten to X2 must be 7 to 9 greater than the node ID
rewritten to X1. This can be used to greatly limit the number of edges in consideration for this
rule.

• Node hints. Node hints can be used to specify on which node IDs and in which steps node labels
can be present.

• Rule hints. Rule hints can be used to specify in which steps a rule can be applied.
• Skipped rule application. Whereas in the previous system one rule had to apply each step (until

the terminal step), a specific step can allow no rules to be applied.
• Simultaneous rule application. Multiple rules can be allowed to be applied in the same step, as

long as they do not involve any of the same nodes or edges. This can allow the number of steps
to be reduced, making the problem size smaller.

• Required rule application. In conjunction with skipped and simultaneous rule application, a step
can require all rules that can be applied to be applied.

4. Comparison with Prior Approach

First, we compare the previous graph-global edge setup method the new per-rule edge hints in terms
of performance. Using the simple comparison grammar from Figure 1(left), we generated graphs of
increasing maximum size allowing 3 steps. Note that the maximum size just sets an upper limit on
the number of nodes and edges that can be in the graph and therefore must be considered; however,
this simple grammar does not allow anything beyond what is shown in Figure 1(right) to be generated.
When generating with edge hints, those in the figure were used. For edge setup, the hints in the figure
were not used and a band-9 edge setup was used, where a node ID 𝑖 could connect to node ID up to



Max Size Edge Setup Edge Hints
10 1.67s 1.39s
12 2.57s 1.58s
14 4.64s 1.67s
16 9.30s 1.74s
18 18.62s 1.81s

Increase between sizes ∼ 1.85× ∼ 1.06×

Table 1
Times to generate comparison graphs with different maximum sizes using either edge setup or edge hints.

𝑖+ 9. Each method was run 25 times, and the time taken to generate graph sequences was averaged.
For the constraint solver, we use a portfolio of three instances of PySAT’s [20] gluecard41 SAT solver,
in turn based on Glucose [21], MiniCARD [22], and MiniSAT [23].

The resulting times as shown in Table 1 show how edge hints have a greatly reduced increase in time
as the maximum size of the graph grows. In particular, the rough multiplier of times between each
increase is much smaller.

5. Generating Missions

As our motivating example, we sought to recreate Dormans’ [2] adventure game mission grammar in
our constraint-based system, and augment it with mechanic rules. As it it quite large, we start with a
simplified version, referred to as mini-Dormans, to explain how the new features of the system were
used to implement it.

The grammar is shown in Figure 2. Edge hints are used throughout; rule hints are used to limit the
steps in which rules can apply. Node hints are used to make sure all non-terminal labels are gone by
the step the generate rules are done applying. Node hints are used, in conjunction with edge hints to
implement an inventory system. Simultaneous rule application is allowed, and skipped/required rule
application is used to force the application of rules related to edge traversability. By the end of the graph
sequence, the goal node label must be gone (due to the player moving onto it).

The first generate rule creates two corridors C each followed by a lock l; it can only be used between
steps 0 and 1. The next two generate rules can replace these corridors C with slots SL in sequence
or parallel, and the next two replace a slot SL with either a key k or nothing n; these can only apply
between steps 1 and 3. At this point in the steps the level has been generated. The next rules are
meant as a proxy for spatial information in Dormans’ grammar to set up for the mechanic rules: in
the original grammar, double edges indicate part of the mission should be spatially behind another
when turned into a space. Since we are not generating the space, we instead make all the other edges
leading to a node that should be behind a node not travesible. This is accomplished by a required rule
application rewriting all incoming single dash - edges to a node with an incoming equal = edge to be
an untraversible x between steps 3 and 4, and then marking all the remaining edges as a traversible
period . between steps 4 and 5 (the box □ in a node means it that node is ignored in the rule). At
this point the playthrough begins: the next rule sets up the player @, with an inventory, which uses
node hints and edge hints to use the label at node ID 0 (k:_, k:1, k:2) to count the number of keys k
the player has collected. The remaining mechanic rules allow the player to move through the graph,
collecting keys and using them to open locks, and reach the goal.

Top control the generated level, constraints are added so that sequence and parallel corridor rules
are used once each, and step 3 has 2 keys. The maximum size is 15 nodes and maximum steps is 20. The
same solver setup is used as above, and 25 graph sequences were generated.

Figure 3 shows a generated graph sequence using this grammar and hints. The first several steps use
generate rules. Step 0 is the initial graph, with just a S node. The next three steps create the graph
structure and place the keys. Step 4 marks two edges incoming to the first lock as not traversible,
requiring the player to use the remaining edge later, and step 5 marks the rest of the edges as traversible.
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Figure 2: Rules for a mini-Dormans mission graph with slots and gameplay rules.

Step 6 begins the application of the mechanic rules, with the player appearing with an empty inventory.
From there the player moves through the graph, picking keys and using them to open locks, and
eventually reaching the goal. The player notably does not take the most direct path. Due to unifying
the generate rules and mechanic rules into a single grammar, keys are placed in the right locations for
the player to open the locks.

We applied the same conceptual approach to Dormans’ full mission grammar [2] to explore the
controllability and applications of the unified grammar approach in various configurations. As the
grammars and generated graph sequences are quite large, here we describe their setup and summarize
their properties, while making more information available at https://osf.io/zxpky/. A partial graph
sequence for the most complex, Dormans-slots, is shown in Figure 4.

• Dormans. This configuration is just generating a Dormans mission graph, with maximum size 45
and maximum 8 steps.

• Dormans-lock-multi. Same as Dormans, but there must be exactly one multi-lock lm node. This
could be useful if a designer would like specific nodes present in the generated graph.

• Dormans-rule-count. Same as Dormans, but the rules for creating a 3 and 5 long linear chain must
be used exactly once each. This could be useful if a designer would like specific rules to be used
to generate the graph.

• Dormans-match. Same as Dormans, but a given substructure consisting of 6 nodes and 4 edges
must be matched in the final graph. This could be useful if a designer likes part of a generated
graph but would like to try variations of the rest of it.

• Dormans-slots. Similar to mini-Dormans but with the complete Dormans grammar. Replaces the
specific key and item placement rules of the original generate grammar with slot nodes, which
can then be filled in with items and keys; augments the generate grammar with a mechanic
grammar and uses this to ensure the generated graph is completable. Uses a maximum size of 45

https://osf.io/zxpky/
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Figure 3: Generated graph sequence for mini-Dormans mission graph.

Time Time Steps Steps Nodes Nodes Edges Edges
Configuration (Med) (Max) (Med) (Max) (Med) (Max) (Med) (Max)
mini-Dormans (gen./mech.) 2.82s 3.21s 20.0 20.0 11.0 11.0 12.0 12.0
Dormans (gen.) 6.07s 6.39s 8.0 8.0 26.0 30.0 28.0 32.0
Dormans-multi-lock (gen.) 6.05s 6.93s 8.0 8.0 25.0 30.0 27.0 32.0
Dormans-rule-count (gen.) 5.99s 6.61s 6.0 8.0 25.0 32.0 25.0 32.0
Dormans-match (gen.) 6.01s 6.26s 8.0 8.0 29.0 33.0 29.0 33.0
Dormans-slots (gen./mech.) 585.38s 1625.65s 35.0 35.0 29.0 35.0 31.0 37.0

Table 2
Summary of different mission generation configurations.

and maximum 35 steps. In the step where the level is generated, there must be 1 quest item, 1
item test, 4 keys, 1 multi-lock, 1 single lock, 1 final key, and 1 final lock.

For each, the same solver setup is used as above, and 25 graph sequences were generated. Summary
statistics of timing, sizes, ans steps are given in Table 2. Some observations of note are that to just
generate the graphs on this scale takes only a few seconds, and adding in a few additional constraints
on the generated graph does appear to increase the time needed much. However, augmenting with
mechanics rules greatly increases the time to generate graph sequences, around 2 orders of magnitude
on average. This may make it prohibitive still for online or interactive generation.
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Figure 4: Selected steps of the graph sequence for a generated Dormans-slots mission graph, showing
both generate and mechanic rules.

6. Conclusion

In this work we have presented an approach to generate completable levels using graph grammars. The
approach combines rules for generating graphs with rules for running game mechanics on graphs into
a single unified grammar. Using a constraint-based system that generates a graph sequence, where the
grammar constrains changes between graphs in the sequence and the level must be solved by the final
step, the mechanic rule ensure that the level generated by the generate rules can be completed. We
describe some practical improvements over the previous system and show their beneficial impact on
timing. We also recreate and augment the adventure game mission grammar of Dormans and show
how the constraint-based approach can provide controllability of generated graphs.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools in preparing this work.
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